This paper provides a simple, novel approach for synchronizing the motions of multiple “slave” nonlinear mechanical systems by actively controlling them so that they follow the motion of an independent “master” mechanical system. The multiple slave systems need not be identical to one another. The method is inspired by recent results in analytical dynamics, and it leads to the determination of the set of control forces to create such synchronization between highly nonlinear dynamical systems. No linearizations or approximations are involved, and the exact control forces needed to synchronize the nonlinear systems are obtained in closed form. The method is applied to the synchronization of multiple, yet different, chaotic gyroscopes that are required to replicate the motion of a master gyro, which may have a chaotic or a regular motion. The efficacy of the method and its simplicity in synchronizing these mechanical systems are illustrated by two numerical examples, the first dealing with a system of three different gyros, the second with five different ones.