Lagrange, J. L., 1787, "*Mecanique Analytique*", Mme Ve Courcier, Paris.

Gear, C. W., 988, “Differential-Algebraic Equation Index Transformations,” SIAM J. Sci. Stat. Comput., 9 , pp. 39–47.

[CrossRef]Maggi, G. A., 1896, "*Principii della Teoria Mathematica del Movimento dei Corpi: Corso di Meccanica Razionale*", Ulrico Hoepli, Milano.

Gibbs, J. W., 1879, “On the Fundamental Formulae of Dynamics,” Am. J. Math., 2 (1), pp. 49–64.

[CrossRef]Appell, P., 1899, “Sur une forme generale des equations de la dynamique,” C. R. Acad. Sci., Paris, 129 , pp. 459–460.

Hamel, G., 1949, "*Theoretische Mechanik*", Springer, Berlin.

Kane, T. R., and Levinson, D. A., 1985, "*Dynamics: Theory and Applications*", McGraw-Hill, New York.

Udwadia, F. E., and Kalaba, R. E., 1992, “A New Perspective on Constrained Motion,” Proc. R. Soc. London, Ser. A, 349 (1906), pp. 407–410.

[CrossRef]Udwadia, F. E., and Kalaba, R. E., 1996, "*Analytical Dynamics: A New Approach*", Cambridge University Press, Cambridge.

Udwadia, F. E., and Kalaba, R. E., 2002, “On the Foundations of Analytical Dynamics,” Int. J. Non-Linear Mech., 37 (6), pp. 1079–1090.

[CrossRef]Pars, L. A., 1965, "*A Treatise on Analytical Dynamics*", Wiley, New York.

Neimark, J. I., and Fufaev, N. A., 1972, "*Dynamics of Nonholonomic Systems*", AMS, Providence.

Goldstein, H., 1980, "*Classical Mechanics*", Addison-Wesley, Reading, MA.

Arnold, V. I., 1989, "*Mathematical Methods of Classical Mechanics*", Springer, New York.

Lurie, A. I., 2002, "*Analytical Mechanics*", Springer, New York.

Papastavridis, J. G., 2002, "*Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians*", Oxford University, New York.

Vujanović, B. D., and Atanacković, T. M., 2003, "*An Introduction to Modern Variational Techniques in Mechanics and Engineering*", Birkhäuser, Boston.

Schiehlen, W., 1997, “Multibody System Dynamics: Roots and Perspectives,” Multibody Syst. Dyn., 1 (2), pp. 149–188.

[CrossRef]Shabana, A. A., 1997, “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn., 1 (2), pp. 189–222.

[CrossRef]Brogliato, B., ten Dam, A. A., Paoli, L., Génot, F., and Abadie, M., 2002, “Numerical Simulation of Finite Dimensional Multibody Nonsmooth Mechanical Systems,” Appl. Mech. Rev., 55 (2), pp. 107–150.

[CrossRef]Eberhard, P., and Schiehlen, W., 2006, “Computational Dynamics of Multibody Systems: History, Formalisms, and Applications,” J. Comput. Nonlinear Dyn., 1 (1), pp. 3–12.

[CrossRef]Laulusa, A., and Bauchau, O. A., 2008, “Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” J. Comput. Nonlinear Dyn., 3 (1), p. 011004.

[CrossRef]Bauchau, O. A., and Laulusa, A., 2008, “Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” J. Comput. Nonlinear Dyn., 3 (1), p. 011005.

[CrossRef]Wehage, R. A., and Haug, E. J., 1982, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” J. Mech. Des., 104 (1), pp. 247–255.

[CrossRef]Gear, C. W., Leimkuhler, B., and Gupta, G. K., 1985, “Automatic Integration of Euler-Lagrange Equations with Constraints,” J. Comput. Appl. Math., 12–13 , pp. 77–90.

[CrossRef]Führer, C., and Leimkuhler, B., 1991, “Numerical Solution of Differential-Algebraic Equations for Constrained Mechanical Motion,” Numer. Math., 59 (1), pp. 55–69.

[CrossRef]Eich, E., 1993, “Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems with Algebraic Constraints,” SIAM J. Numer. Anal., 30 (5), pp. 1467–1482.

[CrossRef]Bayo, E., and Ledesma, R., 1996, “Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics,” Nonlinear Dyn., 9 (1–2), pp. 113–130.

[CrossRef]Cuadrado, J., Cardenal, J., and Bayoj, E., 1997, “Modeling and Solution Methods for Efficient Real Time Simulation of Multibody Dynamics,” Multibody Syst. Dyn., 1 (3), pp. 259–280.

[CrossRef]Yun, X., and Sarkar, N., 1998, “Unified Formulation of Robotic Systems with Holonomic and Nonholonomic Constraints,” IEEE Trans. Rob. Autom., 14 (4), pp. 640–650.

[CrossRef]Chen, S., Hansen, J. M., and Tortorelli, D. A., 2000, “Unconditionally Energy Stable Implicit Time Integration: Application to Multibody System Analysis and Design,” Int. J. Numer. Methods. Eng., 48 (6), pp. 791–822. Available at

http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000630)48:6%3C791::AID-NME859%3E3.0.CO;2-Z/abstractHairer, E., and Wanner, G., 2002, "*Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems*", 2nd ed., Springer, Berlin.

Blajer, W., 2002, “Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems,” Multibody Syst. Dyn., 7 (3), pp. 265–284.

[CrossRef]Kövecses, J., Piedbœuf, J.-C., and Lange, C., 2003, “Dynamics Modeling and Simulation of Constrained Robotic Systems,” IEEE/ASME Trans. Mechatron., 8 (2), pp. 165–177.

[CrossRef]Arnold, M., Fuchs, A., and Führer, C., 2006, “Efficient Corrector Iteration for DAE Time Integration in Multibody Dynamics,” Comp. Methods Appl. Mech. Eng., 195 (50–51), pp. 6958–6973.

[CrossRef]Petzold, L., 1982, “A description of DASSL: A Differential/Aalgebraic System Solver,” Sandia National Laboratory Report SAND82-8637, pp. 4–7.

Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comp. Methods Appl. Mech. Eng., 1 (1), pp. 1–16.

[CrossRef]Baumgarte, J., 1983, “A New Method of Stabilization for Holonomic Constraints,” J. Appl. Mech., 50 (4a), pp. 869–870.

[CrossRef]Gear, C. W., 2006, “Towards Explicit Methods for Differential Algebraic Equations,” BIT Numer. Math., 46 (3), pp. 505–514.

[CrossRef]ten Dam, A. A., 1992, “Stable Numerical Integration of Dynamical Systems Subject to Equality State-Space Constraints,” J. Eng. Math., 26 (2), pp. 315–337.

[CrossRef]Ascher, U. M., Chin, H., and Reich, S., 1994, “Stabilization of DAEs and Invariant Manifolds,” Numer. Math., 67 (2), pp. 131–149.

[CrossRef]Burgermeister, B., Arnold, M., and Esterl, B., 2006, “DAE Time Integration for Real-Time Applications in Multi-Body Dynamics,” Z. Angew.e Math. Mech., 86 (10), pp. 759–771.

[CrossRef]Braun, D. J., and Goldfarb, M., 2009, “Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems,” Comp. Methods Appl. Mech. Eng., 198 (37–40), pp. 3151–3160.

[CrossRef]Ben-Israel, A., and Greville, T. N. E., 2003, "*Generalized Inverse: Theory and Applications*", Springer, New York.

Kövecses, J., and Piedbœuf, J. C., 2003, “A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems,” "*ASME Design Engineering Technical Conferences, 19th Biennial Conference on Mechanical Vibrations and Noise*", Chicago, Illinois, Paper no. DETC2003/VIB-48318, pp. 143–152.

d’Alembert, J., 1743, "*Traite de Dynamique*", Paris.

Parczewski, J., and Blajer, W., 1989, “On Realization of Program Constraints: Part I - Theory,” J. Appl. Mech., 56 (3), pp. 676–679.

[CrossRef]Glocker, C., 2001, "*Set-Valued Force Laws: Dynamics of Non-Smooth Systems*", Springer, Berlin.

Kövecses, J., 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram - Part I: General Formulation,” J. Appl. Mech., 75 (6), p. 061012.

[CrossRef]Vujanović, B. D., and Jones, S. E., 1989, "*Variational Methods in Nonconservative Phenomena*", Academic, New York.

Yoon, S., Howe, R. M., and Greenwood, T. D., 1994, “Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations,” J. Mech. Des., 116 (4), pp. 1058–1064.

[CrossRef]Betsch, P., 2006, “Energy-Consistent Numerical Integration of Mechanical Systems With Mixed Holonomic and Nonholonomic Constraints,” Comp. Methods Appl. Mech. Eng., 195 (50–51), pp. 7020–7035.

[CrossRef]Mei, F., 2000, “Nonnolonomic Mechanics,” Appl. Mech. Rev., 53 (11), pp. 283–305.

[CrossRef]Braun, D., and Goldfarb, M., 2010, “Simulation of Constrained Mechanical Systems - Part II: Explicit Numerical Integration,” J. Appl. Mech.