The aim of the present paper is to investigate the two-dimensional moving contact behavior of piezomagnetic materials under the action of a sliding rigid punch. Introduction of the Galilean transformation makes the constitutive equations containing the inertial terms tractable. Eigenvalues analyses of the piezomagnetic governing equations are detailed, which are more complex than those of the commercially available piezoelectric materials. Four eigenvalue distribution cases occur in the practical computation. For each case, real fundamental solutions are derived. The original mixed boundary value problem with either a flat or a cylindrical punch foundation is reduced to a singular integral equation. Exact solution to the singular integral equation is obtained. Especially, explicit form of the stresses and magnetic inductions are given. Figures are plotted both to show the correctness of the derivation of the exact solution and to reveal the effects of various parameters on the stress and magnetic induction.