Dahlquist, G., 1963, “A Special Stability Problem for Linear Multistep Methods,” BIT, Nord. Tidskr. Inf.behandl., 3 , pp. 27–43.

Fan, S. C., Fung, T. C., and Sheng, G., 1997, “A Comprehensive Unified Set of Single-Step Algorithms With Controllable Dissipation for Dynamics. Part I. Formulation,” Comput. Methods Appl. Mech. Eng., 145 , pp. 87–98.

[CrossRef]Fan, S. C., Fung, T. C., and Sheng, G., 1997, “A Comprehensive Unified Set of Single-Step Algorithms With Controllable Dissipation for Dynamics. Part II. Algorithms and Analysis,” Comput. Methods Appl. Mech. Eng., 145 , pp. 99–107.

[CrossRef]Fung, T. C., 1997, “Unconditionally Stable Higher-Order Newmark Methods by Sub-Stepping Procedure,” Comput. Methods Appl. Mech. Eng., 147 , pp. 61–84.

[CrossRef]Nørsett, S. P., 1974, “One-Step Methods of Hermite Type for Numerical Integration of Stiff Systems,” BIT, Nord. Tidskr. Inf.behandl., 14 , pp. 63–77.

Nørsett, S. P., 1978, “Restricted Padé Approximations to the Exponential Function,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 15 , pp. 1008–1029.

Nørsett, S. P., 1984, "*Splines and Collocation for Ordinary Initial Value Problems*", Reidel, Dordrecht, pp. 397–417.

Hairer, E., Nørsett, S. P., and Wanner, G., 1993, "*Solving Ordinary Differential Equations I. Nonstiff Problems*", Springer, Berlin.

Wood, W. L., 1990, "*Practical Time-Stepping Schemes*", Clanderon, Oxford.

Fung, T. C., 2001, “Unconditionally Stable Collocation Algorithms for Second Order Initial Value Problems,” J. Sound Vib., 247 (2), pp. 343–365.

[CrossRef]Fung, T. C., 1998, “Complex Time-Step Newmark Methods With Controllable Numerical Dissipation,” Int. J. Numer. Methods Eng., 41 , pp. 65–93.

[CrossRef]Fung, T. C., 1998, “Higher Order Time-Step Integration Methods With Complex Time Steps,” J. Sound Vib., 210 , pp. 69–89.

[CrossRef]Fung, T. C., 1999, “Complex Time-Step Methods for Transient Analysis,” Int. J. Numer. Methods Eng., 46 , pp. 1253–1271.

[CrossRef]Tamma, K. K., Zhou, X., and Sha, D., 2000, “The Time Dimension: A Theory Towards the Evolution, Classification, Characterization and Design of Computational Algorithms for Transient/Dynamic Applications,” Arch. Comput. Methods Eng., 7 , pp. 67–290.

[CrossRef]Tamma, K. K., Zhou, X., and Sha, D., 2001, “A Theory of Development and Design of Generalized Integration Operators for Computational Structural Dynamics,” Int. J. Numer. Methods Eng., 50 , pp. 1619–1664.

[CrossRef]Tamma, K. K., Sha, D., and Zhou, X., 2003, “Time Discretized Operators. Part 1: Towards the Theoretical Design of a New Generation of a Generalized Family of Unconditionally Stable Implicit and Explicit Representations of Arbitrary Order for Computational Dynamics,” Comput. Methods Appl. Mech. Eng., 192 , pp. 257–290.

[CrossRef]Sha, D., Zhou, X., and Tamma, K. K., 2003, “Time Discretized Operators. Part 2: Towards the Theoretical Design of a New Generation of a Generalized Family of Unconditionally Stable Implicit and Explicit Representations of Arbitrary Order for Computational Dynamics,” Comput. Methods Appl. Mech. Eng., 192 , pp. 291–329.

[CrossRef]Kanapady, R., and Tamma, K. K., 2003, “On the Novel Design of a New Unified Variational Framework of Discontinuous/Continuous Time Operators of High Order and Equivalence,” Finite Elem. Anal. Design, 39 , pp. 727–749.

[CrossRef]Zhou, X., and Tamma, K. K., 2004, “Design, Analysis, and Synthesis of Generalized Single Step Single Solve and Optimal Algorithms for Structural Dynamics,” Int. J. Numer. Methods Eng., 59 , pp. 597–668.

[CrossRef]Zhou, X., Tamma, K. K., and Sha, D., 2005, “Design Spaces, Measures and Metrics for Evaluating Quality of Time Operators and Consequences Leading to Improved Algorithms by Design—Illustration to Structural Dynamics,” Int. J. Numer. Methods Eng., 64 , pp. 1841–1870.

[CrossRef]Bellman, R. E., and Casti, J., 1971, “Differential Quadrature and Long-Term Integration,” J. Math. Anal. Appl., 34 , pp. 235–238.

[CrossRef]Bert, C. W., and Malik, M., 1996, “Differential Quadrature Method in Computational Mechanics: A Review,” Appl. Mech. Rev., 49 , pp. 1–28.

[CrossRef]Tanaka, M., and Chen, W., 2001, “Coupling Dual Reciprocity BEM and Differential Quadrature Method for Time-Dependent Diffusion Problems,” Appl. Math. Model., 25 , pp. 257–268.

[CrossRef]Tanaka, M., and Chen, W., 2001, “Dual Reciprocity BEM Applied to Transient Elastodynamic Problems With Differential Quadrature Method in Time,” Comput. Methods Appl. Mech. Eng., 190 , pp. 2331–2347.

[CrossRef]Chen, W., and Tanaka, M., 2002, “A Study on Time Schemes for DRBEM Analysis of Elastic Impact Wave,” Comput. Mech., 28 , pp. 331–338.

[CrossRef]Fung, T. C., 2002, “Stability and Accuracy of Differential Quadrature Method in Solving Dynamic Problems,” Comput. Methods Appl. Mech. Eng., 191 , pp. 1311–1331.

[CrossRef]Wang, X., and Bert, C. W., 1993, “A New Approach in Applying Differential Quadrature to Static and Free Vibration of Beams and Plates,” J. Sound Vib., 162 , pp. 566–572.

[CrossRef]Malik, M., and Bert, C. W., 1996, “Implementing Multiple Boundary Conditions in the DQ Solution of Higher-Order PDE’s: Application to Free Vibration of Plates,” Int. J. Numer. Methods Eng., 39 , pp. 1237–1258.

[CrossRef]Eftekhari, S. A., 2006, “Dynamic Analysis of a Composite Beam, Rested on Visco-Elastic Foundation, Carrying Multiple Accelerating Oscillators Using a Coupled Finite Element-Differential Quadrature Method,” MS thesis, Shiraz University, Shiraz, Iran.

Eftekhari, S. A., and Farid, M., 2006, “Dynamic Analysis of Multi-Span Laminated Composite Coated Beams Carrying Multiple Accelerating Oscillators,” ASME Paper No. IMECE2006-13872.

Eftekhari, S. A., Farid, M., and Khani, M., 2009, “Dynamic Analysis of Laminated Composite Coated Beams Carrying Multiple Accelerating Oscillators Using a Coupled Finite Element-Differential Quadrature Method,” ASME J. Appl. Mech., 76 , pp. 061001.

[CrossRef]Bozkaya, C., 2007, “Least-Squares Differential Quadrature Time Integration Scheme in the Dual Reciprocity Boundary Element Method Solution of Diffusive-Convective Problems,” Eng. Anal. Boundary Elem., 31 , pp. 83–93.

[CrossRef]Hughes, T. J. R., 1987, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Zienliewicz, O. C., and Taylor, R. L., 1990, "*The Finite Element Method*", 4th ed., McGraw-Hill, NewYork.

Mancuso, M., and Ubertini, F., 2002, “The Nørsett Time Integration Methodology for Finite Element Transient Analysis,” Comput. Methods Appl. Mech. Eng., 191 , pp. 3297–3327.

[CrossRef]Bert, C. W., Jang, S. K., and Striz, A. G., 1988, “Two New Approximate Methods for Analysing Free Vibration of Structural Components,” AIAA J., 26 , pp. 612–618.

[CrossRef]Jang, S. K., Bert, C. W., and Striz, A. G., 1989, “Application of Differential Quadrature to Static Analysis of Structural Components,” Int. J. Numer. Methods Eng., 28 , pp. 561–577.

[CrossRef]Meirovitch, L., 1967, "*Analytical Methods in Vibrations*", Macmillan, New York.

Bathe, K. J., and Wilson, E. L., 1976, "*Numerical Methods in Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Rieker, J. R., Lin, Y. -H., and Trethewey, M. W., 1996, “Discretization Considerations in Moving Load Finite Element Beam Models,” Finite Elem. Anal. Design, 21 , pp. 129–144.

[CrossRef]Lin, Y. H., and Tretheway, M. W., 1990, “Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads,” J. Sound Vib., 136 (2), pp. 323–342.

[CrossRef]Pesterev, A. V., Yang, B. L., Bergman, A., and Tan, C. A., 2001, “Response of Elastic Continuum Carrying Multiple Moving Oscillators,” J. Eng. Mech., 127 (3), pp. 260–265.

[CrossRef]