Bansal, Y., and Pindera, M.-J., 2005, “A Second Look at the Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 72 , pp. 177–195.

Pinderal, M.-J., and Bansal, Y., 2007, “On the Micromechanics-Based Simulation of Metal Matrix Composite Response,” ASME J. Eng. Mater. Technol.

[CrossRef], 129 , pp. 468–482.

Bansal, Y., and Pindera, M.-J., 2006, “Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases,” Int. J. Plast.

[CrossRef], 22 (5), pp. 775–825.

Bansal, Y., 2005, “Finite Volume Direct Averaging Micromechanics of Heterogeneous Media,” Ph.D., thesis, Engineering and Applied Science University of Virginia, VA.

Kalamkarov, A. L., and Kolpakov, A. G., 1997, "*Analysis, Design and Optimization of Composite Structures*", Wiley, New York.

Aboudi, J., Pindera, M.-J., and Arnold, S. M., 1999, “Higher-Order Theory for Functionally Graded Materials,” Composites, Part B, 33 (8), pp. 777–832.

Aboudi, J., Pindera, M.-J., and Arnold, S. M., 2002, “High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials,” Paper No. NASA-TM-2002-211469.

Bansal, Y., and Pindera, M.-J., 2003, “Efficient Reformulation of the Thermo-Elastic Higher-Order Theory for Functionally Graded Materials,” J. Therm. Stresses

[CrossRef], 26 (11–12), pp. 1055–1092.

Cavalcante, M. A. A., 2006, “Modeling of the Transient Thermo-Mechanical Behavior of Composite Material Structures by the Finite-Volume Theory,” MS thesis, Civil Engineering Department, Federal University of Alagoas, Maceio, Alagoas, Brazil.

Cavalcante, M. A. A., Marques, S. P. C., and Pindera, M.-J., 2007, “Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis,” ASME J. Appl. Mech.

[CrossRef], 74 (5), pp. 935–945.

Cavalcante, M. A. A., Marques, S. P. C., and Pindera, M.-J., 2007, “Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part II: Numerical Results,” ASME J. Appl. Mech.

[CrossRef], 74 (5), pp. 946–957.

Gattu, M., 2007, “Parametric Finite Volume Theory for Periodic Heterogeneous Materials,” MS thesis, Civil Engineering Department, University of Virginia, VA.

Benssousan, A., Lions, J.-L., and Papanicolaou, G., 1978, "*Asymptotic Analysis for Periodic Structures*", North-Holland, Amsterdam.

Sanchez-Palencia, E., 1980, "*Non-Homogeneous Media and Vibration Theory*" (Lecture Notes in Physics Vol. 127 ) Springer-Verlag, Berlin.

Kouznetsova, V., Brekelemans, W. A. M., and Baaijens, F. P. T., 2001, “An Approach to Micro-Macro Modeling of Heterogeneous Materials,” Comput. Mech.

[CrossRef], 27 , pp. 37–48.

Kouznetsova, V., Greers, M. G. D., and Brekelmans, W. A. M., 2002, “Multi-Scale Constitutive Modeling of Heterogeneous Materials With a Gradient-Enhanced Computational Homogenization Scheme,” Int. J. Numer. Methods Eng.

[CrossRef], 54 , pp. 1235–1260.

Van der Sluis, O., Schreurs, P. J. G., Brekelmans, W. A. M., and Meijer, H. E. H., 2000, “Overall Behaviour of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modeling,” Mech. Mater.

[CrossRef], 32 , pp. 449–462.

Terada, K., Hori, M., Kyoya, T., and Kikuchi, N., 2000, “Simulation of the Multi-Scale Convergence in Computational Homogenization Approach,” Int. J. Solids Struct.

[CrossRef], 37 , pp. 2285–2311.

Hill, R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids

[CrossRef], 11 , pp. 357–372.

Sun, C. T., Vaidya, R. S., 1996, “Prediction of Composite Properties From a Representative Volume Element,” Compos. Sci. Technol.

[CrossRef], 56 (2), pp. 171–179.

Kenaga, D., Doyle, J. F., and Sun, C. T., 1987, “The Characterization of Boron∕Aluminum Composite in the Nonlinear Range as an Orthotropic Elastic-Plastic Material,” J. Compos. Mater.

[CrossRef], 21 (6), pp. 516–531.

Whitney, J. M., and Riley, M. B., 1966, “Elastic Properties of Fiber Reinforced Composite Materials,” AIAA J.

[CrossRef], 4 (9), pp. 1537–1542.

Paley, M., and Aboudi, J., 1992, “Micromechanical Analysis of Composites by the Generalized Method of Cells,” Mech. Mater.

[CrossRef], 14 , pp. 127–139.

Gao, X. G., Song, Y. D., and Sun, Z. G., 2005, “Research on Variation of Effective Performances of Composites Induced by the Stochastic Fiber Size,” J. Materials Science Engineering, 23 (95), pp. 335–340.

Gao, X. G., Song, Y. D., and Sun, Z. G., 2005, “Research on the Discrepancy of Composite Effective Properties Induced by the Stochastic Fiber Location,” J. Aerospace Power, 20 (4), pp. 584–589.

Sun, Z. G., Song, Y. D., Gao, X. G., and Gao, D. P., 2004, “Influence of Micro-Structural Geometry on Thermal Expansion Coefficient of Composites,” Chinese Journal of Applied Mechanics, 21 , pp. 146–150.

Song, Y. D., Sun, Z. G., and Gao, X. G., 2005, “Research on Discrepancy of Fiber Reinforced Composite Effective Performance,” J. Aerospace Power, 20 , pp. 230–235.