Fletcher, W. P., and Gent, A. N., 1953, “Non-Linearity in the Dynamic Properties of Vulcanised Rubber Compounds,” Trans. Inst. Rubber Ind., 29 , pp. 266–280.

Jurado, F. J., Mateo, A., Gil-Negrete, N., Viñolas, J., and Kari, L., 1999, “Testing and FE Modelling of the Dynamic Properties of Carbon Black Filled Rubbers,” "*Proceedings of the EAEC*", Barcelona, pp. 119–126.

Medalia, A. I., 1978, “Effects of Carbon Black on Dynamic Properties of Rubber,” Rubber Chem. Technol., 51 , pp. 437–523.

Sjöberg, M., 2000, “Dynamic Behaviour of a Rubber Component in the Low Frequency Range: Measurements and Modelling,” "*Proceedings of the Seventh International Conference of Sound and Vibration*", Garmisch-Partenkirchen, pp. 2955–2962.

Dean, G. D., Duncan, J. C., and Johnson, A. F., 1984, “Determination of Nonlinear Dynamic Properties of Carbon-Black Filled Rubbers,” Polym. Test.

[CrossRef], 4 , pp. 225–249.

Wang, M. J., 1998, “Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates,” Rubber Chem. Technol., 71 , pp. 520–589.

Mooney, M., 1940, “A Theory of Large Elastic Deformation,” J. Appl. Phys.

[CrossRef], 11 , pp. 582–592.

Valanis, K. C., and Landel, R. F., 1967, “The Strain-Energy Function of a Hyperelastic Material in Terms of Extension Ratios,” J. Appl. Phys.

[CrossRef], 38 , pp. 2997–3002.

Treloar, L. R. G., 1975, "*The Physics of Rubber*", Clarendon, Oxford.

Rivlin, R. S., 1992, “The Elasticity of Rubber,” Rubber Chem. Technol., 65 , pp. G51–G66.

Yeoh, O. H., 1990, “Characterization of Elastic Properties of Carbon-Black Filled Rubber Vulcanizates,” Rubber Chem. Technol., 69 , pp. 792–805.

Arruda, E. M., and Boyce, M. C., 1993, “A Three-Dimensional Constitutive Model for Large Stretch Behaviour of Rubber Elastic Materials,” J. Mech. Phys. Solids

[CrossRef], 41 , pp. 389–412.

Yeoh, O. H., 1997, “On the Ogden Strain-Energy Function,” Rubber Chem. Technol., 70 , pp. 175–182.

Lambert-Diani, J., and Rey, C., 1999, “New Phenomenological Behaviour Laws for Rubbers and Thermoplastic Elastomers,” Eur. J. Mech. A/Solids

[CrossRef], 18 , pp. 1027–1043.

James, A. G., Green, A., and Simpson, G. M., 1975, “Strain Energy Functions of Rubber: I. Characterization of Gum Vulcanizates,” J. Appl. Polym. Sci.

[CrossRef], 19 , pp. 2033–2055.

Charlton, D. J., Yang, J., and The, K. K., 1994, “A Review of Methods to Characterize Rubber Elastic Behaviour for Use in Finite Element Analysis,” Rubber Chem. Technol., 67 , pp. 481–503.

Yeoh, O. H., 1993, “Some Forms of the Strain-Energy Function for Rubber,” Rubber Chem. Technol., 66 , pp. 754–771.

Gil-Negrete, N., García-Tárrago, M. J., and Viñolas, J., 2006, “Influence of the Number of Parameters of a Rubber Isolator Viscoelastic Model on the Predicted Dynamic Behaviour of a Suspended Mass,” "*Proceedings of the ISMA 2006*", Leuven, pp. 1039–1050.

Betz, E., 1968, "*Spring and Dashpot Models and Their Applications in the Study of the Dynamic Properties of Rubber*", “Engineering Bulletin Series ,” University of Newcastle, Faculty of Engineering, Department of Mechanical Engineering.

Flügge, W., 1975, "*Viscoelasticity*", Springer-Verlag, Berlin.

Gil-Negrete, N., 2004, “On the Modelling and Dynamic Stiffness Prediction of Rubber Isolators,” Ph.D. thesis, University of Navarra, San Sebastián, Spain.

Lubliner, J., 1985, “A Model of Rubber Viscoelasticity,” Mech. Res. Commun.

[CrossRef], 12 , pp. 93–99.

Johnson, A. R., Quigley, C. J., and Mead, J. L., 1994, “Large Strain Viscoelastic Constitutive Models for Rubber,” Rubber Chem. Technol., 67 , pp. 904–917.

Johnson, A. R., Quigley, C. J., and Freese, C. E., 1995, “A Viscohyperelastic Finite Element Model for Rubber,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 127 , pp. 163–180.

Yang, L. M., Shim, V. P. W., and Lim, C. T., 2000, “A Visco-Hyperelastic Approach to Modeling the Constitutive Behaviour of Rubber,” Int. J. Impact Eng., 42 , pp. 339–362.

Simo, J. C., 1987, “On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 60 , pp. 153–173.

Mullins, L., 1969, “Softening of Rubber by Deformation,” Rubber Chem. Technol., 42 , pp. 339–362.

Oldham, K. B., and Spanier, J., 1974, "*The Fractional Calculus*", Academic, New York.

Bagley, R., and Torvik, P., 1983, “Fractional Calculus: A Different Approach to the Analysis of Viscoelastically Damped Structures,” AIAA J., 21 , pp. 741–748.

Koeller, R. C., 1984, “Applications of Fractional Calculus to the Theory of Viscoelasticity,” ASME J. Appl. Mech., 51 , pp. 299–307.

Eldred, L. B., Baker, W. B., and Palazotto, A. N., 1996, “Numerical Application of Fractional Derivative Model Constitutive Relations for Viscoelastic Materials,” Comput. Struct.

[CrossRef], 60 , pp. 875–882.

Shimizu, N., and Zhang, W., 1999, “Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials,” JSME Int. J., Ser. C, 42 (4), pp. 825–837.

Enelund, M., and Olsson, P., 1999, “Damping Described by Fading Memory: Analysis and Applications to Fractional Derivative Models,” Int. J. Solids Struct.

[CrossRef], 36 , pp. 939–970.

Park, S. W., 2001, “Analytical Modelling of Viscoelastic Dampers for Structural and Vibration Control,” Int. J. Solids Struct., 38 , pp. 8065–8092.

Sjöberg, M., and Kari, L., 2002, “Non-Linear Behavior of a Rubber Isolator System Using Fractional Derivatives,” Veh. Syst. Dyn., 37 (3), pp. 217–236.

Sjöberg, M., and Kari, L., 2003, “Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model,” Nonlinear Dyn., 33 (3), pp. 323–336.

García-Tárrago, M. J., Kari, L., Viñolas, J., and Gil-Negrete, N., 2007, “Torsion Stiffness of a Rubber Bushing: A Simple Effective Engineering Formula Including Amplitude Dependence,” J. Strain Anal. Eng. Des., 42 (1), pp. 13–21.

García-Tárrago, M. J., Kari, L., Viñolas, J., and Gil-Negrete, N., 2007, “Frequency and Amplitude Dependence of the Radial and Axial Stiffness of the Carbon Black Filled Rubber Bushings,” Polym. Test., 26 , pp. 629–638.

Padovan, J., 1987, “Computational Algorithms for FE Formulations Involving Fractional Operators,” Comput. Mech.

[CrossRef], 2 , pp. 271–287.

Enelund, M., Mähler, L., Runesson, K., and Josefson, B. L., 1999, “Formulation and Integration of the Standard Linear Viscoelastic Solid With Fractional Order Rate Laws,” Int. J. Solids Struct., 36 , pp. 2417–2442.

Zhang, W., and Shimizu, N., 2001, “FE Formulation for the Viscoelastic Body Modeled by Fractional Constitutive Law,” Acta Mech. Sin., 17 (4), pp. 354–365.

Schmidt, A., and Gaul, L., 2002, “Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives,” Nonlinear Dyn.

[CrossRef], 29 , pp. 37–55.

Ravindra, B., and Mallik, A. K., 1994, “Performance of Non-Linear Vibration Isolators Under Harmonic Excitation,” J. Sound Vib.

[CrossRef], 170 , pp. 325–337.

Ulmer, J. D., 1995, “Strain Dependence of Dynamic Mechanical Properties of Carbon-Black Filled Rubber Compounds,” Rubber Chem. Technol., 69 , pp. 15–47.

Wineman, A., Van Dyke, T., and Shi, S., 1998, “A Nonlinear Viscoelastic Model for One-Dimensional Response of Elastomeric Bushings,” Int. J. Mech. Sci., 40 , pp. 1295–1305.

Lion, A., 1999, “Strain-Dependent Properties of Filled Rubber: A Non-Linear Viscoelastic Approach Based on Structural Variables,” Rubber Chem. Technol., 72 , pp. 410–429.

Miehe, C., and Keck, J., 2000, “Superimposed Finite Elastic-Viscoelastic-Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation,” J. Mech. Phys. Solids

[CrossRef], 48 , pp. 323–365.

Kaliske, M., and Rothert, H., 1998, “Constitutive Approach to Rate-Independent Properties of Filled Elastomers,” Int. J. Solids Struct., 35 , pp. 2057–2071.

Gregory, M. J., 1985, “Dynamic Properties of Rubber in Automotive Engineering,” Elastomerics, 117 , pp. 17–24.

Austrell, E., Olsson, A. K., and Jönsson, M., 2001, “A Method to Analyse the Non-Linear Dynamic Behaviour of Carbon-Black Filled Rubber Components Using Standard FE Codes,” "*Proceedings of the Second Conference on Constitutive Models for Rubbers*", pp. 231–235.

ASTM, 1996, “Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods,” ASTM D5992-96, revised 2001.

Payne, A. R., and Whittaker, R. E., 1971, “Low Strain Dynamic Properties of Filled Rubbers,” Rubber Chem. Technol., 44 , pp. 440–478.

Besseling, J. F., 1958, “A Theory of Elastic, Plastic and Creep Deformation of an Initially Isotropic Material,” ASME J. Appl. Mech., 25 , pp. 529–536.