Landis, C. M., 2004, “Energetically Consistent Boundary Conditions for Electromechanical Fracture,” Int. J. Solids Struct.

[CrossRef], 41 (22–23), pp. 6291–6315.

Parton, V. Z., 1976, “Fracture Mechanics of Piezoelectric Materials,” Acta Astronaut.

[CrossRef], 3 (9–10), pp. 671–683.

Deeg, W. F. J., 1980, “The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids,” Ph.D. thesis, Stanford University, Palo Alto, CA.

Pak, Y. E., 1990, “Crack Extension Force in a Piezoelectric Material,” ASME J. Appl. Mech.

[CrossRef], 57 (3), pp. 647–653.

Hao, T.-H., and Shen, Z.-Y., 1994, “A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications,” Eng. Fract. Mech.

[CrossRef], 47 (6), pp. 793–802.

Zhang, T. Y., and Gao, C. F., 2004, “Fracture Behaviors of Piezoelectric Materials,” Theor. Appl. Fract. Mech.

[CrossRef], 41 (1–3), pp. 339–379.

McMeeking, R. M., 2004, “The Energy Release Rate for a Griffith Crack in a Piezoelectric Material,” Eng. Fract. Mech.

[CrossRef], 71 (7–8), pp. 1149–1163.

Ding, H., Wang, G., and Chen, W., 1998, “A Boundary Integral Formulation and 2D Fundamental Solutions for Piezoelectric Media,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 158 (1–2), pp. 65–80.

Kuna, M., 1998, “Finite Element Analyses of Crack Problems in Piezoelectric Structures,” Comput. Mater. Sci., 13 (1–3), pp. 67–80.

Shang, F., Kuna, M., and Scherzer, M., 2002, “Analytical Solutions for Two Penny-Shaped Crack Problems in Thermo-Piezoelectric Materials and Their Finite Element Comparisons,” Int. J. Fract.

[CrossRef], 117 (2), pp. 113–128.

Shang, F., Kuna, M. and Abendroth, M., 2003, “Finite Element Analyses of Three-Dimensional Crack Problems in Piezoelectric Structures,” Eng. Fract. Mech., 70 (2), pp. 143–160.

Wippler, K., Ricoeur, A., and Kuna, M., 2004, “Towards the Computation of Electrically Permeable Cracks in Piezoelectrics,” Eng. Fract. Mech., 71 (18), pp. 2567–2587.

Heyer, V., Schneider, G. A., Balke, H., Drescher, J., and Bahr, H.-A., 1998, “A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC 151 Ceramics,” Acta Mater.

[CrossRef], 46 (18), pp. 6615–6622.

Gruebner, O., Kamlah, M., and Munz, D., 2003, “Finite Element Analysis of Cracks in Piezoelectric Materials Taking Into Account the Permittivity of the Crack Medium,” Eng. Fract. Mech., 70 (11), pp. 1399–1413.

Abendroth, M., Groh, U., Kuna, M., and Ricoeur, A., 2002, “Finite Element-Computation of the Electromechanical J-Integral for 2-D and 3-D Crack Analysis,” Int. J. Fract., 114 (4), pp. 359–378.

Ricoeur, A., and Kuna, M., 2003, “Influence of Electric Fields on the Fracture of Ferroelectric Ceramics,” J. Eur. Ceram. Soc., 23 (8), pp. 1313–1328.

Enderlein, M., Ricoeur, A., and Kuna, M., 2005, “Finite Element Techniques for Dynamic Crack Analysis in Piezoelectrics,” Int. J. Fract., 134 (3–4), pp. 191–208.

Banks-Sills, L., Motola, Y., and Shemesh, L., 2008, “The M-Integral for Calculating Intensity Factors of an Impermeable Crack in a Piezoelectric Material,” Eng. Fract. Mech., 75 (5), pp. 901–925.

Ikeda, T., 1990, "*Fundamentals of Piezoelectricity*", Oxford University Press, Oxford, UK.

Qin, Q. H., 2001, "*Fracture Mechanics of Piezoelectric Materials*", WIT, Southampton, UK.

Yau, J. F., Wang, S. S., and Corten, H. T., 1980, “A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity,” ASME J. Appl. Mech., 47 (2), pp. 335–341.

Wang, S. S., Yau, J. F., and Corten, H. T., 1980, “A Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids Using Conservation Laws of Elasticity,” Int. J. Fract.

[CrossRef], 16 (3), pp. 247–259.

Suo, Z., Kuo, C.-M., Barnett, D. M., and Willis, J. R., 1992, “Fracture Mechanics for Piezoelectric Ceramics,” J. Mech. Phys. Solids

[CrossRef], 40 (4), pp. 739–765.

Banks-Sills, L., and Sherman, D., 1992, “On the Computation of Stress Intensity Factors for Three-Dimensional Geometries by Means of the Stiffness Derivative and J-Integral Methods,” Int. J. Fract., 53 (1), pp. 1–20.

2004, ANSYS, Release 9, Ansys, Inc., Canonsburg, PA.

Berlincourt, D., and Krueger, H. A., 1959, “Properties of Morgan Electro Ceramic Ceramics,” Morgan Electro Ceramics, Report No. TP-226.

Pak, Y. E., 1992, “Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials,” Int. J. Fract.

[CrossRef], 54 (1), pp. 79–100.

ESIS Procedures and Documentations, 2000, "*ESIS P5-00/VAMAS: Procedure for Determining the Fracture Toughness of Ceramics Using the Single-Edge-V-Notched Beam (SEVNB) Method*", European Structural Integrity Society, Dubendorf, Switzerland.

Jelitto, H., Keßler, H., Schneider, G. A., and Balke, H., 2005, “Fracture Behavior of Poled Piezoelectric PZT Under Mechanical and Electrical Loads,” J. Eur. Ceram. Soc.

[CrossRef], 25 (5), pp. 749–757.

Schneider, G. A., Felten, F., and McMeeking, R. M., 2003, “The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture,” Acta Mater.

[CrossRef], 51 (8), pp. 2235–2241.