Kirugulige, M. S., Kitey, R., and Tippur, H. V., 2005, “Dynamic Fracture Behavior of Model Sandwich Structures With Functionally Graded Core: A Feasibility Study,” Compos. Sci. Technol.

[CrossRef], 65 , pp. 1052–1068.

Delale, F., and Erdogan, F., 1983, “The Crack Problem for a Non-Homogeneous Plane,” ASME J. Appl. Mech., 50 , pp. 609–614.

Konda, N., and Erdogan, F., 1994, “The Mixed-Mode Crack Problem in a Nonhomogeneous Elastic Medium,” Eng. Fract. Mech.

[CrossRef], 47 (4), pp. 533–545.

Parameswaran, V., and Shukla, A., 1999, “Crack Tip Stress Fields for Dynamic Fracture in Functionally Graded Materials,” Mech. Mater.

[CrossRef], 31 , pp. 579–596.

Chalivendra, V., and Shukla, A., 2005, “Transient Elastodynamic Crack Growth in Functionally Graded Materials,” ASME J. Appl. Mech.

[CrossRef], 72 , pp. 237–248.

Butcher, R. J., Rousseau, C. E., and Tippur, H. V., 1998, “A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis,” Acta Mater.

[CrossRef], 47 (1), pp. 259–268.

Rousseau, C.-E., and Tippur, H. V., 2000, “Compositionally Graded Materials With Cracks Normal to the Elastic Gradient,” Acta Mater.

[CrossRef], 48 , pp. 4021–4033.

Rousseau, C.-E., and Tippur, H. V., 2001, “Dynamic Fracture of Compositionally Graded Materials With Cracks Along the Elastic Gradient: Experiments and Analysis,” Mech. Mater., 37 , pp. 403–421.

Kirugulige, M. S., and Tippur, H. V., 2006, “Mixed Mode Dynamic Crack Growth in Functionally Graded Glass-Filled Epoxy,” Exp. Mech.

[CrossRef], 46 (2), pp. 269–281.

Bittencourt, T. N., Wawrzynek, P. A., Ingraffea, A. R., and Sousa, J. L., 1996, “Quasi-Automatic Simulation of Crack Propagation for 2D LEFM Problems,” Eng. Fract. Mech., 55 (2), pp. 321–334.

Nishioka, T., 1997, “Computational Dynamic Fracture Mechanics,” Int. J. Fract., 86 , pp. 127–159.

Nishioka, T., Tokudome, H., and Kinoshita, M., 2001, “Dynamic Fracture Path Prediction in Impact Fracture Phenomena Using Moving Finite Element Method Based on Delaunay Automatic Mesh Generation,” Int. J. Solids Struct.

[CrossRef], 38 , pp. 5273–5301.

Kim, J. H., and Paulino, G. H., 2004, “Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading,” Int. J. Mecha. Mater. Des., 1 , pp. 63–94.

Tilbrook, M. T., Moon, R. J., and Hoffman, M., 2005, “Finite Element Simulations of Crack Propagation in Functionally Graded Materials Under Flexural Loading,” Eng. Fract. Mech., 72 , pp. 2444–2467.

Dugdale, D. C., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids

[CrossRef], 8 , pp. 100–104.

Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7 , pp. 55–129.

Needleman, A., 1987, “A Continuum Model for Void Nucleation by Inclusion Debonding,” ASME J. Appl. Mech., 54 , pp. 525–531.

Xu, X. P., and Needleman, A., 1994, “Numerical Simulations of Fast Crack Growth in Brittle Solids,” J. Mech. Phys. Solids

[CrossRef], 42 (9), pp. 1397–1434.

Wang, Z., and Nakamura, T., 2004, “Simulations of Crack Propagation is Elastic-Plastic Graded Materials,” Mech. Mater.

[CrossRef], 36 , pp. 601–622.

Jin, Z. H., Paulino, G. H., and Dodds, R. H., 2003, “Cohesive Fracture Modeling of Elastic-Plastic Crack Growth in Functionally Graded Materials,” Eng. Fract. Mech.

[CrossRef], 70 (14), pp. 1885–1912.

Shim, D. J., Paulino, G. H., and Dodds, R. H., 2006, “J Resistance Behavior in Functionally Graded Materials Using Cohesive Zone and Modified Boundary Layer Models,” Int. J. Fract.

[CrossRef], 139 (1), pp. 91–117.

Geubelle, P. H., and Baylor, J. S., 1998, “Impact Induced Delamination of Composites: A 2D Simulation,” Composites, Part B

[CrossRef], 29 , pp. 589–602.

Zavattieri, P. D., Raghuram, P. V., and Espinosa, H. D., 2001, “A Computational Model of Ceramic Microstructures Subjected to Multi-Axial Dynamic Loading,” J. Mech. Phys. Solids

[CrossRef], 49 , pp. 27–68.

Zhang, Z., and Paulino, G. H., 2005, “Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials,” Int. J. Plast.

[CrossRef], 21 , pp. 1195–1254.

Tvergaard, V., and Hutchinson, J. W., 1994, “The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids,” J. Mech. Phys. Solids

[CrossRef], 40 , pp. 1377–1397.

Madhusudhana, K. S., and Narasimhan, R., 2002, “Experimental and Numerical Investigations of Mixed Mode Crack Growth Resistance of a Ductile Adhesive Joint,” Eng. Fract. Mech.

[CrossRef], 69 , pp. 865–883.

Camacho, G. T., and Ortiz, M., 1996, “Computational Modeling of Impact Damage in Brittle Materials,” Int. J. Solids Struct.

[CrossRef], 33 (20–22), pp. 2899–2938.

Ortiz, M., and Pandolfi, A., 1999, “Finite-Deformation Irreversible Cohesive Elements for Three Dimensional Crack Propagation Analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 44 , pp. 1267–1282.

Belytschko, T., and Black, A. T., 1999, “Elastic Crack Growth in Finite Elements With Minimal Re-Meshing,” Int. J. Numer. Methods Eng.

[CrossRef], 45 , pp. 601–620.

Moes, N., and Belytschko, T., 2002, “Extended Finite Elements for Cohesive Crack Growth,” Eng. Fract. Mech.

[CrossRef], 69 , pp. 813–833.

Erdogan, F., and Sih, G. C., 1963, “On the Crack Extension in Plates Under Plane Loading and Transverse Shear,” ASME J. Basic Eng., 85D (4), pp. 519–525.

Dally, J. W., and Sanford, R. J., 1987, “Strain Gage Methods for Measuring the Opening Mode Stress Intensity Factor, KI,” Exp. Mech., 49 , pp. 381–388.

Maleski, M. J., Kirugulige, M. S., and Tippur, H. V., 2004, “A Method for Measuring Mode-I Crack Tip Constraint Under Static and Dynamic Loading Conditions,” Exp. Mech.

[CrossRef], 44 (5), pp. 522–532.

Tippur, H. V., Krishnaswamy, S., and Rosakis, A. J., 1991, “Optical Mapping of Crack Tip Deformations Using the Methods of Transmission and Reflection Coherent Gradient Sensing: A. Study of Crack Tip K-Dominance,” Int. J. Fract., 52 , pp. 91–117.

Jain, N., Rousseau, C. E., and Shukla, A., 2004, “Crack Tip Stress Fields in Functionally Graded Materials With Linearly Varying Properties,” Theor. Appl. Fract. Mech.

[CrossRef], 42 , pp. 155–170.

2004, “Theory and Users Manuals, I, II and III,” ABAQUS , Version 6.5, Hibbit, Karlsson and Sorenson, RI.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1978, “Collocation, Dissipation and Overshoot for Time Integration Schemes in Structural Dynamics,” Earthquake Eng. Struct. Dyn.

[CrossRef], 6 , pp. 99–117.

Rice, J. R., 1968, “Mathematical Analysis in the Mechanics of Fracture,” "*Fracture, An Advanced Treatise*", Vol. 2 , LiebowitzH., ed., Academic, New York, pp. 191–311.

Anlas, G., Santare, M. H., and Lambros, J., 2000, “Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials,” Int. J. Fract.

[CrossRef], 104 , pp. 131–143.

Kim, J. H., and Paulino, G. H., 2002, “Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials,” ASME J. Appl. Mech.

[CrossRef], 69 , pp. 502–514.

Rousseau, C.-E., and Tippur, H. V., 2002, “Evaluation of Crack Tip Fields and Stress Intensity Factors in Functionally Graded Elastic Materials: Cracks Parallel to Elastic Gradient,” Int. J. Fract., 114 , pp. 87–111.

Giannakopoulos, A. E., and Suresh, S., 1997, “Indentation of Solids With Gradients in Elastic Properties: Part—I. Point Force,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 2357–2392.

Owens, A. T., 2007, “Development of a Split Hopkinson Bar for Testing Stress-Strain Response of Particulate Composites Under High Rates of Loading,” MS thesis, Auburn University, Auburn TX.

Paulino, G. H., and Kim, J. H., 2004, “A New Approach to Compute T-Stress in Functionally Graded Materials by Means of Interaction Integral Method,” Eng. Fract. Mech.

[CrossRef], 71 , pp. 1907–1950.

Abanto-Bueno, J., and Lambros, J., 2006, “An Experimental Study of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials,” Exp. Mech., 46 , pp. 179–196.