Drago, A. S., and Pindera, M.-J., 2007, “Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures,” Compos. Sci. Technol.

[CrossRef]67 (6), pp. 1243–1263.

Hill, R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids

[CrossRef], 11 , pp. 357–372.

Sanchez-Palencia, E., 1980, "*Non-Inhomogeneous Media and Vibration Theory*"Lecture Notes in Physics Vol. 127 , Springer-Verlag Berlin.

Suquet, P. M., 1987, "*Elements of Homogenization for Inelastic Solid Mechanics*"Lecture Notes in Physics Vol. 272 , Springer-Verlag, Berlin, pp. 193–278.

Bansal, Y., and Pindera, M.-J., 2005, “A Second Look at the Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 72 , pp. 177–195. see also NASA CR2004-213043.

Bansal, Y., and Pindera, M.-J., 2006, “Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases,” Int. J. Plast.

[CrossRef], 22 (5), pp. 775–825.

Chen, C. H., and Cheng, S., 1967, “Mechanical Properties of Fiber Reinforced Composites,” J. Compos. Mater., 1 , pp. 30–41.

Pickett, G., 1968, “Elastic Moduli of Fiber Reinforced Plastic Composites,” "*Fundamental Aspect of Fiber Reinforced Plastic Composites*", R.T.Schwartz and H.S.Schwartz, eds., Wiley, New York, pp. 13–27.

Leissa, A. W., and Clausen, W. E., 1968, “Application of Point Matching to Problems in Micromechanics,” "*Fundamental Aspects of Fiber Reinforced Plastic Composites*", R.T.Schwartz and H.S.Schwartz, eds., Wiley New York, pp. 29–44.

Heaton, M. D., 1968, “A Calculation of the Elastic Constants of a Unidirectional Fibre-Reinforced Composite,” Br. J. Appl. Phys., J. Phys. D, 2 (1), pp. 1039–1048.

Koiter, W. T., 1960, “Stress Distribution in an Infinite Elastic Sheet With a Doubly-Periodic Set of Equal Holes,” "*Boundary Value Problems in Differential Equations*", R.E.Langer, ed., The University of Wisconsin Press, Madison, pp. 191–213.

Fil’shtinskii, L. A., 1964, “Stresses and Displacements in an Elastic Plane Weakened by a Doubly Periodic System of Identical Circular Holes,” Prikl. Mat. Mekh., 28 (3), pp. 430–441.

Wilson, H. B., and Hill, J. L., 1965, “Plane Elastostatic Analysis of an Infinite Plate with a Doubly Periodic Array of Holes or Rigid Inclusions,” Mathematical Studies of Composite Materials II, Report No. S-50, Rohm and Hass Company Redstone Arsenal Research Division, Huntsville, AL, pp. 39–66.

Grigolyuk, E. I., and Fil’shtinskii, L. A., 1966, “Elastic Equilibrium of an Isotropic Plane With Doubly Periodic System of Inclusions,” Sov. Appl. Mech., 2 (9), pp. 1–7.

Wang, J., Mogilevskaya, S. G., and Crouch, S. L., 2005, “An Embedding Method for Modeling Micromechanical Behavior and Macroscopic Properties of Composite Materials,” Int. J. Solids Struct.

[CrossRef], 42 , pp. 4588–4612.

Crouch, S. L., and Mogilevskaya, S. G., 2006, “Loosening of Elastic Inclusions,” Int. J. Solids Struct.

[CrossRef], 43 , pp. 1638–1668.

Lipton, R. P., 2003, “Assessment of the Local Stress State Through Macroscopic Variables,” Philos. Trans. R. Soc. London, Ser. A

[CrossRef], 361 , pp. 921–946.

Davison, T., Pindera, M.-J., and Wadley, H. N. G., 1994, “Elastic Behavior of a Layered Cylinder Subjected to Diametral Loading,” Composites Eng., 4 (10), pp. 995–1009.

Jirousek, J., 1978, “Basis for Development of Large Finite Elements Locally Satisfying all Fields Equations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 14 , pp. 65–92.

Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. London, Ser. A

[CrossRef], 241 , pp. 376–396.

Drago, A. S., and Pindera, M.-J., 2008, “A Locally-Exact Homogenization Approach for Periodic Heterogeneous Materials,” "*Multiscale and Functionally Graded Materials, 2006*", G.H.Paulino, M.-J.Pindera, R.H.Dodds, Jr., F.A.Rochinha, E.V.Dave, and L.Chen, eds., AIP Conf. Proc. No. 973 , American Institute of Physics, Melville, NY, pp. 203–208.

Zielinski, A. P., and Herrera, I., 1987, “Trefftz Method: Fitting Boundary Conditions,” Int. J. Numer. Methods Eng.

[CrossRef], 24 , pp. 871–891.