Frangi, A., and di Gioa, A., 2005, “Multipole BEM for Evaluating Damping Forces on MEMS,” Comput. Mech.

[CrossRef], 37 (1), pp. 24–31.

Roman, M., and Aubry, N., 2003, “Design and Fabrication of Electrostatically Actuated Synthetic Microjets,” ASME, New York, AMD-259 , pp. 517–524.

Ko, S. C., Kim, Y. C., Lee, S. S., Choi, S. S., and Kim, S. R., 2003, “Micromachined Piezoelectric Membrane Acoustic Device,” Sens. Actuators, A

[CrossRef], 103 , pp. 130–134.

Mukherjee, S., 1982, "*Boundary Element Methods in Creep and Fracture*", Applied Science, London.

Banerjee, P. K., 1994, "*Boundary Element Methods in Engineering*", McGraw-Hill, Europe.

Chandra, A., and Mukherjee, S., 1997, "*Boundary Element Methods in Manufacturing*", Oxford University Press, New York.

Bonnet, A., 1999, "*Boundary Element Equation Methods for Solids and Fluids*", Wiley, Chichester, UK.

Mukherjee, S., and Mukherjee, Y. X., 2005, "*Boundary Methods: Elements, Contours and Nodes*", Taylor & Francis, London/CRC, Boca Raton, FL.

Yang, T. Y., 1986, "*Finite Element Structural Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Zienkiewicz, O. C., and Taylor, R. L., 2005, "*The Finite Element Method*", Vols. 1 and 2, 4th ed., McGraw-Hill, Berkshire, UK.

Hughes, T. J. R., 2000, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Dover, Mineola, NY.

Senturia, S. D., Harris, R. M., Johnson, B. P., Kim, S., Nabors, K., Shulman, M. A., and White, J. K., 1992, “A Computer Aided Design System for Microelectromechanical Systems (MEMCAD),” J. Microelectromech. Syst., 1 , pp. 3–13.

Nabors, K., and White, J., 1991, “FastCap: A Multi-Pole Accelerated 3-D Capcacitance Extraction Program,” IEEE Trans. Comput.-Aided Des.

[CrossRef], 10 , pp. 1447–1459.

Gilbert, J. R., Legtenberg, R., and Senturia, S. D., 1995, “3D Coupled Electromechanics for MEMS: Applications of CoSolve-EM,” "*Proceedings of the IEEE MEMS*", pp. 122–127.

Shi, F., Ramesh, P., and Mukherjee, S., 1995, “Simulation Methods for Micro-Electro-Mechanical Structures (MEMS) With Applications to Microtweezer,” Compos. Struct., 56 , pp. 769–783.

Aluru, N. R., and White, J., 1997, “An Efficient Numerical Technique for Electromechanical Simulation of Complicated Microelectromechancial Structures,” Sens. Actuators, A

[CrossRef], 58 , pp. 1–11.

Shi, F., Ramesh, P., and Mukherjee, S., 1996, “Dynamic Analysis of Micro-Electro-Mechanical Systems,” Int. J. Numer. Methods Eng., 39 , pp. 4119–4139.

Harrington, R. F., 1993, "*Field Computation by Moment Methods*", IEEE, Piscataway, NJ.

Bao, Z., and Mukherjee, S., 2004, “Electrostatic BEM for MEMS With Thin Conducting Plates and Shells,” Eng. Anal. Boundary Elem., 28 , pp. 1427–1435.

Bao, Z., and Mukherjee, S., 2005, “Electrostatic BEM for MEMS With Thin Beams,” Commun. Numer. Methods Eng., 21 , pp. 297–312.

Chuyan, S. -W., Liao, Y. -S., and Chen, J. -T., 2005, “Computational Study of the Effect of Finger Width and Aspect Ratios for the Electrostatic Levitating Force of MEMS Comb Drive,” J. Microelectromech. Syst., 14 , pp. 305–312.

Li, G., and Aluru, N. R., 2003, “Efficient Mixed-Domain Analysis of Electrostatic MEMS,” IEEE Trans. Comput.-Aided Des.

[CrossRef], 22 , pp. 1228–1242.

Li, G., and Aluru, N. R., 2002, “A Lagrangian Approach for Electrostatic Analysis of Deformable Conductors,” J. Microelectromech. Syst.

[CrossRef], 11 , pp. 245–254.

Shrivastava, V., Aluru, N. R., and Mukherjee, S., 2004, “Numerical Analysis of 3D Electrostatics of Deformable Conductors Using a Lagrangian Approach,” Eng. Anal. Boundary Elem., 28 , pp. 583–591.

DeS. K., and AluruN. R., 2004, “Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS,” IEEE J. Microelectromech. Syst., 13 , pp. 737–758.

Mukherjee, S., Bao, Z., Roman, M., and Aubry, N., 2005, “Nonlinear Mechanics of MEMS Plates With a Total Lagrangian Approach,” Compos. Struct., 13 , pp. 758–768.

Telukunta, S., and Mukherjee, S., 2006, “Fully Lagrangian Modeling of MEMS With Thin Plates,” J. Microelectromech. Syst., 15 (4), pp. 795–810.

Ghosh, R., and Mukherjee, S., 2009, “Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part II: Damped Vibrations,” ASME J. Appl. Mech., 76 , p. 051008.

Mukherjee, S., 2000, “Finite Parts of Singular and Hypersingular Integrals With Irregular Boundary Source Points,” Eng. Anal. Boundary Elem., 24 , pp. 767–776.

Nanson, E. J., 1877, “Note on Hydrodynamics,” The Messenger of Mathematics, 7 , pp. 182–183.

Reddy, J. N., 2004, "*Introduction to Nonlinear Finite Element Analysis*", Oxford University Press, New York.

Bao, Z., Mukherjee, S., Roman, M., and Aubry, N., 2004, “Nonlinear Vibrations of Beams, Strings, Plates and Membranes Without Initial Tension,” ASME J. Appl. Mech.

[CrossRef], 71 (4), pp. 551–559.

Newmark, N. M., 1959, “A Method of Computation for Structural Dynamics,” J. Engrg. Mech. Div., 85 , pp. 67–94.

Belytschko, T., Liu, W. K., and Moran, B., 2000, "*Nonlinear Finite Element for Continua and Structures*", Wiley, Chichester, West Sussex, England.

Liu, Y. J., and Shen, L., 2007, “A Dual BIE Approach for Large-Scale Modelling of 3-D Electrostatic Problems With the Fast Multipole Boundary Element Method,” Int. J. Numer. Methods Eng., 71 (7), pp. 837–855.

Petersen, K. E., 1982, “Silicon as a Mechanical Material,” Proc. IEEE

[CrossRef], 70 , pp. 420–455.

Sharpe, W. N., 2001, “Mechanical Properties of MEMS Materials,” "*The MEMS Handbook*", CRC, Boca Raton, FL.

Younis, M. I., Abdel-Rahman, E. M., and Nayfeh, A. H., 2003, “A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS,” J. Microelectromech. Syst.

[CrossRef], 12 (5), pp. 672–680.

Hurty, W. C., and Rubinstein, M. F., 1964, "*Dynamics of Structures*", Prentice-Hall, Englewood Cliffs, NJ.

Chen, H., and Mukherjee, S., 2006, “Charge Distribution on Thin Conducting Nanotubes—Reduced 3-D Model,” Int. J. Numer. Methods Eng.

[CrossRef], 68 (5), pp. 503–524.

Chen, H., Mukherjee, S., and Aluru, N., 2008, “Charge Distribution on Thin Semiconducting Silicon Nanowire,” Comput. Methods Appl. Mech. Eng., 197 , pp. 3366–3377.