Hodges, D. J., and Rutkowsky, M. J., 1981, “Free Vibration Analysis of Rotating Beams by a Variable Order Finite Element Method,” AIAA J.

[CrossRef], 19 (11), pp. 1459–1466.

Wright, A. D., Smith, C. E., Thresher, R. W., and Wang, J. L. C., 1982, “Vibration Modes of Centrifugally Stiffened Beams,” ASME J. Appl. Mech., 49 (2), pp. 197–202.

Yoo, H. H., and Shin, S. H., 1998, “Vibration Analysis of Rotating Cantilever Beams,” J. Sound Vib.

[CrossRef], 212 (5), pp. 807–828.

Sinha, S. K., 2007, “Combined Torsional-Bending-Axial Dynamics of a Twisted Rotating Cantilever Timoshenko Beam With Contact-Impact Loads at the Free End,” ASME J. Appl. Mech.

[CrossRef], 74 (3), pp. 505–522.

Avramov, K. V., Pierre, C., and Shyriaieva, N., 2007, “Flexural-Flexural-Torsional Non-Linear Vibrations of Pre-Twisted Rotating Beams With Asymmetric Cross-Sections,” J. Vib. Control, 13 (4), pp. 329–364.

Lauzon, D. M., and Murthy, V. R., 1993, “Determination of Vibration Characteristics of Multiple-Load-Path Blades by a Modified Galerkin Method,” Comput. Struct., 46 (6), pp. 1007–1020.

Wang, G., and Wereley, N. M., 2004, “Free Vibration Analysis of Rotating Blades With Uniform Tapers,” AIAA J., 42 (12), pp. 2429–2437.

Banerjee, J. R., 2000, “Free Vibration of Centrifugally Stiffened Uniform and Tapered Beams Using the Dynamic Stiffness Method,” J. Sound Vib.

[CrossRef], 233 (5), pp. 857–875.

Udupa, K. M., and Varadan, T. K., 1990, “Hierarchical Finite Element Method for Rotating Beams,” J. Sound Vib.

[CrossRef], 138 (3), pp. 447–456.

Gunda, J. B., and Ganguli, R., 2008, “New Rational Interpolation Functions for Finite Element Analysis of Rotating Beams,” Int. J. Mech. Sci., 50 (3), pp. 578–588.

Gunda, J. B., and Ganguli, R., 2008, “Stiff String Basis Functions for Vibration Analysis of High Speed Rotating Beams,” ASME J. Appl. Mech.

[CrossRef], 75 (2), p. 024502.

Gunda, J. B., Singh, A. P., Chabbra, P. P. S., and Ganguli, R., 2007, “Free Vibration Analysis of Rotating Tapered Blades Using Fourier-p Superelement,” Struct. Eng. Mech., 27 (2), pp. 243–257.

Vinod, K. G., Gopalakrishnan, S., and Ganguli, R., 2007, “Free Vibration and Wave Propagation Analysis of Uniform and Tapered Rotating Beams Using Spectrally Formulated Finite Elements,” Int. J. Solids Struct., 44 (18–19), pp. 5875–5893.

Naguleswaran, S., 1994, “Lateral Vibration of a Centrifugally Tensioned Uniform Euler-Bernouli Beam,” J. Sound Vib.

[CrossRef], 176 (5), pp. 613–624.

Lee, S. Y., and Sheu, J. J., 2007, “Free Vibrations of Rotating Inclined Beam,” ASME J. Appl. Mech.

[CrossRef], 74 (3), pp. 406–414.

Banerjee, J. R., 2001, “Dynamic Stiffness Formulation and Free Vibration Analysis of Centrifugally Stiffened Timoshenko Beams,” J. Sound Vib.

[CrossRef], 247 (1), pp. 97–115.

Banerjee, J. R., 2003, “Free Vibration of Sandwich Beams Using the Dynamic Stiffness Method,” Comput. Struct., 81 (18–19), pp. 1915–1922.

Banerjee, J. R., Su, H., and Jackson, D. R., 2006, “Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method,” J. Sound Vib., 298 (4–5), pp. 1034–1054.

Hashemi, S. M., and Richard, M. J., 2001, “Natural Frequencies of Rotating Uniform Beams With Coriolis Effects,” ASME J. Vibr. Acoust.

[CrossRef], 123 (4), pp. 444–455.

Mierovitch, L., 1986, "*Elements of Vibration Analysis*", 2nd ed., McGraw-Hill, New York.

Drexel, M. V., and Ginsberg, J. H., 2001, “Modal Overlap and Dissipation Effects of a Cantilever Beam With Multiple Attached Oscillators,” ASME J. Vibr. Acoust.

[CrossRef], 123 (2), pp. 181–187.

Pawar, P. P., and Ganguli, R., 2003, “Genetic Fuzzy System for Damage Detection in Beams and Helicopter Rotor Blades,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 (16–18), pp. 2031–2057.

Reddy, J. N., 1993, "*An Introduction to the Finite Element Method*", 3rd ed., McGraw-Hill, New York.

Biondi, B., and Caddemni, S., 2005, “Closed Form Solutions of Euler-Bernouli Beams With Singularities,” Int. J. Solids Struct.

[CrossRef], 42 (9–10), pp. 3027–3044.

Biondi, B., and Caddemni, S., 2007, “Euler-Bernouli Beams With Multiple Singularities in the Flexural Stiffness,” Eur. J. Mech. A/Solids, 26 (5), pp. 789–809.

Jin, X., Leon, M., and Wang, Q., 2008, “A Practical Method for Singular Integral Equations of the Second Kind,” Eng. Fract. Mech., 75 (5), pp. 1005–1014.

Miller, R. K., 1971, “On Ignoring the Singularity in Numerical Quadrature,” Math. Comput., 25 (115), pp. 521–532.

Liu, D. S., and Chiou, D. Y., 2003, “A Coupled IEM/FEM Approach for Solving Elastic Problems With Multiple Cracks,” Int. J. Solids Struct., 40 (8), pp. 1973–1993.

Schwarz, H. R., 1989, "*Numerical Analysis: A Comprehensive Introduction*", Wiley, New York.