Carpinteri, A., 1981, “A Fracture Mechanics Model for Reinforced Concrete Collapse,” "*Proc. of the IABSE Colloquium on Advanced Mechanics of Reinforced Concrete*", Delft, I.A.B.S.E., Zürich, pp. 17–30.

Carpinteri, A., 1984, “Stability of Fracturing Process in R.C. Beams,” J. Struct. Eng., 110 , pp. 544–558.

Carpinteri, An., Spagnoli, A., and Vantadori, S., 2004, “A Fracture Mechanics Model for a Composite Beam With Multiple Reinforcements Under Cyclic Bending,” Int. J. Solids Struct.

[CrossRef], 41 , pp. 5499–5515.

Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7 , pp. 55–129.

Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids

[CrossRef], 8 , pp. 100–104.

Hillerborg, A., Modeer, M., and Petersson, P. E., 1976, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res.

[CrossRef], 6 , pp. 773–782.

Petersson, P. E., 1981, “Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials,” Ph.D. thesis, Lund. Institute of Technology, Lund, Denmark.

Hillerborg, A., 1980, “Analysis of Fracture by Means of the Fictitious Crack Model, Particularly for Fibre Reinforced Concrete,” Int. J. Cem. Comp., 2 , pp. 177–184.

Carpinteri, A., 1989, “Cusp Catastrophe Interpretation of Fracture Instability,” J. Mech. Phys. Solids

[CrossRef], 37 , pp. 567–582.

Carpinteri, A., 1985, “Interpretation of the Griffith Instability as a Bifurcation of the Global Equilibrium,” "*Application of Fracture Mechanics to Cementitious Composites (Proc. of a NATO Advanced Research Workshop, Evanston, IL, 1984)*", S.P.Shah, ed., Martinus Nijhoff, Dordrecht, pp. 287–316.

Carpinteri, A., ed., 1999, "*Nonlinear Crack Models for Nonmetallic Materials*", Kluwer, Dordrecht.

Shah, S. P., 1988, “Fracture Toughness of Cement-Based Materials,” Mater. Struct.

[CrossRef], 21 , pp. 145–150.

Cotterell, B., Paravasivam, P., and Lam, K. Y., 1992, “Modelling the Fracture of Cementitious Composites,” Mater. Struct.

[CrossRef], 25 , pp. 14–20.

Li, V. C., and Liang, E., 1986, “Fracture Processes in Concrete and Fiber Reinforced Cementitious Composites,” J. Eng. Mech., 112 , pp. 566–586.

Wecharatana, M., and Shah, S. P., 1983 “A Model for Prediction of Fracture Resistance of Fiber Reinforced Concrete,” Cem. Concr. Res.

[CrossRef], 13 , pp. 819–829.

Visalvanich, K., and Naaman, A. E., 1983, “Fracture Model for Fiber Reinforced Concrete,” ACI J.80 , pp. 128–138.

Ballarini, R., Shah, S. P., and Keer, L. M., 1984, “Crack Growth in Cement Based Composites,” Eng. Fract. Mech.

[CrossRef], 20 , pp. 433–445.

Mai, Y. W., 1985, “Fracture Measurements for Cementitious Composites,” "*Application of Fracture Mechanics to Cementitious Composites (Proc. of a NATO Advanced Research Workshop*", Evanston, IL, 1984), S.P.Shah, ed., Martinus Nijhoff, Dordrecht, pp. 399–429.

Jenq, Y. S., and Shah, S. P., 1985, “A Two-Parameter Fracture Model for Concrete,” J. Eng. Mech., 111 , pp. 1227–1241.

Foote, R. M. L., Mai, Y. W., and Cotterell, B., 1986, “Crack Growth Resistance Curves in Strain-Softening Materials,” J. Mech. Phys. Solids

[CrossRef], 6 , pp. 593–607.

Zhang, J., and Li, V. C., 2004, “Simulation of Crack Propagation in Fiber-Reinforced Concrete by Fracture Mechanics,” Cem. Concr. Res.

[CrossRef], 34 , pp. 333–339.

Ruiz, G., 2001, “Propagation of a Cohesive Crack Crossing a Reinforcement Layer,” Int. J. Fract.

[CrossRef], 111 , pp. 265–282.

Erdogan, F., and Joseph, P. F., 1987, “Toughening of Ceramics Through Crack Bridging by Ductile Particles,” J. Mech. Phys. Solids, 35 , pp. 262–270.

Mai, Y. W., 1991, “Fracture and Fatigue of Non-transformable Ceramics: The Role of Crack-Interface Bridging,” "*Fracture Processes in Concrete, Rock and Ceramics*", J.G. M.Van Mier, ed., E.&F.N. Spon, London, pp. 3–26.

Cox, B. N., 1991, “Extrinsic Factors in the Mechanics of Bridged Cracks,” Acta Metall. Mater.

[CrossRef], 39 , pp. 1189–1201.

Marshall, D. B., Cox, B. N., and Evans, A. G., 1985, “The Mechanics of Matrix Cracking in Brittle Matrix Fiber Composites,” Acta Metall.

[CrossRef], 33 , pp. 2013–2021.

Marshall, D. B., and Cox, B. N., 1987, “Tensile Fracture of Brittle-Matrix Composites: Influence of Fiber Strength,” Acta Metall.

[CrossRef]35 , pp. 2607–2619.

Budiansky, B., Hutchinson, J. W., and Evans, A. G., 1986, “Matrix Fracture in Fiber-Reinforced Ceramics,” J. Mech. Phys. Solids

[CrossRef], 34 , pp. 167–189.

Cox, B. N., and Marshall, D. B., 1991, “Crack Bridging in the Fatigue of Fibrous Composites,” Fatigue Fract. Eng. Mater. Struct.

[CrossRef], 14 , pp. 847–861.

Cox, B. N., and Marshall, D. B., 1991, “Stable and Unstable Solutions for Bridged Cracks in Various Specimens,” Acta Metall. Mater.

[CrossRef], 39 , pp. 579–589.

Ballarini, R., and Muju, S., 1991, “Stability Analysis of Bridged Cracks in Brittle Matrix Composites,” ASME Paper No. 91-GT-094.

Bosco, C., and Carpinteri, A., 1992, “Fracture Behavior of Beam Cracked Across Reinforcement,” Theor. Appl. Fract. Mech., 17 , pp. 61–68.

Carpinteri, A., and Bosco, C., 1995, “Discontinuous Constitutive Response of Brittle Matrix Fibrous Composites,” J. Mech. Phys. Solids

[CrossRef], 43 , pp. 261–274.

Carpinteri, A., and Massabò, R., 1996, “Bridged Versus Cohesive Crack in the Flexural Behavior of Brittle-Matrix Composites,” Int. J. Fract.

[CrossRef], 81 , pp. 125–145.

Carpinteri, A., and Massabò, R., 1997, “Continuous vs Discontinuous Bridged-Crack Model for Fiber-Reinforced Materials in Flexure,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 2321–2338.

Carpinteri, A., Ferro, G., and Ventura, G., 2003, “Bending Behaviour Simulations of Fibre Reinforced Beams With Rebars by Using the Bridged Crack Model,” "*Computational Modelling of Concrete Structures, Proc. of Euro-C 2003 Conference*", St. Johann im Pongau, Austria, N.Bićcanićc, R.de Borst, H.Mang, and G.Meschke, eds., Balkema, pp. 707–716.

Carpinteri, A., Ferro, G., and Ventura, G., 2003, “Size Effects on Flexural Response of Reinforced Concrete Elements with a Nonlinear Matrix,” Eng. Fract. Mech.

[CrossRef], 70 , pp. 995–1013.

Carpinteri, A., Ferro, G., and Ventura, G., 2004, “Double Brittle-to-Ductile Transition in Bending of Fibre Reinforced Concrete Beams With Rebars,” Int. J. Numer. Analyt. Meth. Geomech.

[CrossRef], 28 , pp. 737–756.

Carpinteri, A., and Carpinteri, An., 1984, “Hysteretic Behavior of RC Beams,” J. Struct. Eng., 110 , pp. 2073–2084.

Carpinteri, An., 1992, “Reinforced Concrete Beam Behavior Under Cyclic Loadings,” "*Applications of Fracture Mechanics to Reinforced Concrete*", A.Carpinteri, ed., Elsevier, New York, pp. 547–578.

Carpinteri, A., and Puzzi, S., 2003, “Hysteretic Flexural Behaviour of Brittle Matrix Fibrous Composites: The Case of Two Fibers,” "*Proc. of 16th National (Italian) Congress of Theoretical and Applied Mechanics (AIMETA)*", A.I.M.E.T.A., Ferrara, CD-ROM, File 102.

Carpinteri, A., and Puzzi, S., 2004, “The Bridged Crack Model for the Analysis of FRC Elements Under Repeated Bending Loading,” "*Fibre-Reinforced Concretes, Proc. of 6th RILEM Symposium on Fibre Reinforced Concrete*", Varenna, Italy, R.I.L.E.M. Publications S.a.r.l., Bagneux, M.Di Prisco, R.Felicetti, and G.A.Plizzari, eds., pp. 767–776.

Carpinteri, An., Spagnoli, A., and Vantadori, S., 2005, “Mechanical Damage of Ordinary or Prestressed Reinforced Concrete Beams Under Cyclic Bending,” Eng. Fract. Mech.

[CrossRef], 72 , pp. 1313–1328.

Tada, H., Paris, P., and Irwin, G., 1985, "*The Stress Analysis of Cracks Handbook*", Paris Productions, St. Louis, MO (and Del Research Corporation, 1963).

Murakami, Y., 1987, "*Stress Intensity Factors Handbook*", Pergamon Press, Oxford.

Paris, P. C., and Erdogan, F., 1963, “A Critical Analysis of Crack Propagation Laws,” ASME J. Basic Eng., 85 , pp. 528–534.

Matsumoto, T., and Li, V. C., 1999, “Fatigue Life Analysis of Fiber Reinforced Concrete With a Fracture Mechanics Based Model,” CRC Crit. Rev. Solid State Mater. Sci., 21 , pp. 249–261.

Reis, J. M. L., and Ferreira, A. J. M., 2003, “Fracture Behaviour of Glass Fiber Reinforced Polymer Concrete,” Polym. Test.

[CrossRef], 22 , pp. 149–153.