Haertling, G. H., 1999, “Ferroelectric Ceramics: History and Technology,” J. Am. Ceram. Soc., 82 (4), pp. 797–818.
Freiman, S. W., and Pohanka, R. C., 1989, “Review of Mechanically Related Failures of Ceramic Capacitors,” J. Am. Ceram. Soc.
[CrossRef], 72 (12), pp. 2258–2263.
Suo, Z., Kuo, C.-M., Barnett, D. M., and Willis, J. R., 1992, “Fracture Mechanics for Piezoelectric Ceramics,” J. Mech. Phys. Solids
[CrossRef], 40 (4), pp. 739–765.
McMeeking, R. M., 1989, “Electrostrictive Stresses Near Crack-Like Flaws,” ZAMP
[CrossRef], 40 , pp. 615–627.
McMeeking, R. M., 2001, “Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials,” Int. J. Fract.
[CrossRef], 108 (1), pp. 25–41.
Guiu, F., Algueró, M., and Reece, M. J., 2003, “Crack Extension Force and Rate of Mechanical Work of Fracture in Linear Dielectrics and Piezoelectrics,” Philos. Mag., 83 (7), pp. 873–888.
Zhang, T. Y., Zhao, M., and Tong, P., 2002, “Fracture of Piezoelectric Ceramics,” Adv. Appl. Mech., 38 , pp. 147–289.
Park, S., and Sun, C.-T., 1995, “Fracture Criteria for Piezoelectric Ceramics,” J. Am. Ceram. Soc.
[CrossRef], 78 (6), pp. 1475–1480.
Tobin, A. G., and Pak, Y. E., 1993, “Effect of Electric Fields on Fracture Behavior of PZT Ceramics,” Proc. SPIE, 1916 , pp. 78–86.
Wang, H., and Singh, R. N., 1997, “Crack Propagation in Piezoelectric Ceramics: Effects of Applied Electric Fields,” J. Appl. Phys.
[CrossRef], 81 (11), pp. 7471–7479.
Lynch, C. S., 1998, “Fracture of Ferroelectric and Relaxor Electro-Ceramics: Influence of Electric Field,” Acta Mater.
[CrossRef], 46 (2), pp. 599–608.
Fu, R., and Zhang, T. Y., 2000, “Effects of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics,” J. Am. Ceram. Soc., 83 (5), pp. 1215–1218.
Schneider, G. A., and Heyer, V., 1999, “Influence of the Electric Field on Vickers Indentation Crack Growth in BaTiO3,” J. Eur. Ceram. Soc.
[CrossRef], 19 , pp. 1299–1306.
Schneider, G. A., Felten, F., and McMeeking, R. M., 2003, “The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture,” Acta Mater.
[CrossRef], 51 , pp. 2235–2241.
Balke, H., Kemmer, G., and Drescher, J., 1997, “Some Remarks on Fracture Mechanics of Piezoelectric Solids,” "Proceedings of the International Conference and Exhibition of Micro Materials’97", B.Michel and T.Winkler, eds., pp. 398–401.
Haug, A., and McMeeking, R., 2006, “Cracks With Surface Charge in Poled Ferroelectrics,” Eur. J. Mech. A/Solids, 25 , pp. 24–41.
Landis, C. M., 2004, “Energetically Consistent Boundary Conditions for Electromechanical Fracture,” Int. J. Solids Struct.
[CrossRef], 41 , pp. 6291–6315.
Jelitto, H., Felten, F., Häusler, C., Kessler, H., Balke, H., and Schneider, G. A., 2005, “Measurement of Energy Release Rates for Cracks in PZT Under Electromechanical Loads,” Electroceramics 2004, J. Eur. Ceram. Soc., 25 , pp. 2817–2820.
Sakai, M., and Bradt, R. C., 1986, “Graphical Methods for Determining the Nonlinear Fracture Parameters of Silica and Graphite Refractory Composites,” "Fourth International Symposium on the Fracture Mechanics of Ceramics", VPI, Chicago, June 19–21, 1985, Plenum Press, New York, Vol. 7 , pp. 127–142.
Rose, L. R. F., and Swain, M. V., 1986, “Two R-Curves for Partially Stabilized Zirkonia,” J. Am. Ceram. Soc.
[CrossRef], 69 (3), pp. 203–207.
Kreher, W. S., 2002, “Influence of the Domain Switching Zones on the Fracture Toughness of Ferroelectrics,” J. Mech. Phys. Solids
[CrossRef], 50 , pp. 1029–1050.
Suo, Z., 1991, “Mechanics Concepts for Failure in Ferroelectric Ceramics,” "Smart Structures and Materials", ASME 1991, AD-Vol. 24 /AMD-Vol. 123 , pp. 1–6.
Jelitto, H., Keßler, H., Schneider, G. A., and Balke, H., 2004, “Fracture Behavior of Poled Piezoelectric PZT Under Mechanical and Electrical Loads,” J. Eur. Ceram. Soc.
[CrossRef], 25 (5), pp. 749–757.
Kübler, J., 1998, “Bestimmung der Bruchzähigkeit keramischer Werkstoffe mit der SEVNB Methode: Resultate eines VAMAS/ESIS Ringversuches,” in "Proceedings of the Werkstoffwoche", EMPA, Dubendorf, Switzerland.
Kübler, J., 2001, “Fracture Toughness of Ceramics Using the SEVNB Method: From a Preliminary Study to a Standard Test Method,” in "Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409", J.A.Salem, M.G.Jenkins, and G.D.Quinn, eds., American Society for Testing and Materials, West Conshohocken, PA.
Fett, T., Munz, D., and Thun, G., 1995, “Evaluation of Bridging Parameters in Aluminas From R-Curves by Use of the Fracture Mechanical Weight Function,” J. Am. Ceram. Soc., 78 (4), pp. 949–951.
Jelitto, H., Felten, F., and Schneider, G. A., 2005, “Experimenteller Aufbau zur Messung der Energiefreisetzungsrate für Risswachstum in PZT unter elektromechanischer Last,” DVM-Bericht 237 , 37. Tagung des DVM-Arbeitskreises Bruchvorgänge, Technische Sicherheit, Zuverlässigkeit und Lebensdauer, pp. 365–372.
Heyer, V., Schneider, G. A., Balke, H., Drescher, J., and Bahr, H.-A., 1998, “A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC151 Ceramics,” Acta Mater.
[CrossRef], 46 (18), pp. 6615–6622.
Muñoz-Saldaña, J., Schneider, G. A., and Eng, L. M., 2001, “Stress Induced Movement of Ferroelastic Domain Walls in BaTiO3 Single Crystals Evaluated by Scanning Force Microscopy,” Surf. Sci.
[CrossRef], 480 , pp. L402–L410.
Kemmer, G., 2000, “Berechnung von elektromagnetischen Intensitätsparametern bei Rissen in Piezokeramiken,” Fortschritt-Berichte VDI, Reihe 18 , Nr. 261, VDI Verlag, Düsseldorf (in German), p. 33.
Kessler, H., Balke, H., Jelitto, H., and Schneider, G. A., 2004, “An Approximation for Electrically Semipermeable Edge Cracks and its Application to Fracture Analysis of PZT,” Proc. Appl. Math. Mech., 4 , pp. 282–283.
Kounga Njiwa, A. B., Lupascu, D. C., and Rödel, J., 2004, “Crack Tip Switching Zone in Ferroelectric Ferroelastic Materials,” Acta Mater., 52 , pp. 4919–4927.
Hackemann, S., and Pfeiffer, W., 2003, “Domain Switching in Process Zones of PZT: Characterization by Microdiffraction and Fracture Mechanical Methods,” J. Eur. Ceram. Soc., 23 , pp. 141–151.
Kolleck, A., 2000, “Einfluß der ferroelastischen Domänenschaltprozesse auf die Bruchzähigkeit und Bruchfestigkeit von BaTiO3 und PZT,” Fortschritt-Berichte VDI, Reihe 5 , Nr. 614, VDI Verlag, Düsseldorf (in German), pp. 159–160.
Hwang, S. C., Lynch, C. S., and McMeeking, R. M., 1995, “Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model,” Acta Metall. Mater.
[CrossRef], 43 (5), pp. 2073–2084.