Pagano, N. J., 1969, “Exact Solution for Composite Laminates in Cylindrical Bending,” J. Compos. Mater., 3 , pp. 398–411.

Pagano, N. J., 1970, “Exact Solution for Rectangular Bidirectional Composites and Sandwich Plates,” J. Compos. Mater., 4 , pp. 20–34.

Pagano, N. J., 1974, “On the Calculation of Interlaminar Normal Stress in Composite Laminates,” J. Compos. Mater., 8 , pp. 65–81.

Srinivas, S., and Rao, A. K., 1970, “Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates,” Int. J. Solids Struct.

[CrossRef], 6 , pp. 1463–1481.

Srinivas, S., Joga Rao, C. V., and Rao, A. K., 1970, “An Exact Analysis for Vibration of Simply Supported Homogeneous and Laminated Thick Rectangular Plates,” J. Sound Vib.

[CrossRef], 12 , pp. 187–199.

Pandya, B. N., and Kant, T., 1988, “Higher Order Shear Deformation Theories for Flexure of Sandwich Plates: Finite Element Evaluations,” Int. J. Solids Struct.

[CrossRef], 24 , pp. 1267–1286.

Lo, K. H., Christensen, R. M., and Wu, E. M., 1977, “A High-Order Theory of Plate Deformation—Part 2: Laminated Plate,” ASME J. Appl. Mech., 44 , pp. 669–676.

Spilker, R. L., 1982, “Hybrid-Stress Eight-Node Elements for This and Thick Multilayered Laminated Plates,” Int. J. Numer. Methods Eng.

[CrossRef], 18 , pp. 801–828.

Engblom, J. J., and Ochoa, O., 1985, “Through-the-Thickness Stress Predictions for Laminated Plates of Advanced Composite Materials,” Int. J. Numer. Methods Eng., 21 , pp. 1759–1776.

Liou, W., and Sun, C. T., 1987, “A Three-Dimensional Hybrid Stress Isoparametric Element for the Analysis of Laminated Composite Plates,” Compos. Struct., 25 , pp. 241–249.

Sciuva, M. D., 1987, “An Improved Shear Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates,” ASME J. Appl. Mech., 54 , pp. 589–596.

Noor, A. K., and Burton, W. S., 1989, “Stress and Free Vibration Analyses of Multilayered Composite Plates,” Compos. Struct.

[CrossRef], 11 , pp. 183–204.

Lu, X., and Liu, D., 1992, “An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates,” ASME J. Appl. Mech., 59 , pp. 502–509.

Barbero, E. J., 1992, “A 3-D Finite Element for Laminated Composites With 2-D Kinematic Constrains,” Compos. Struct., 45 , pp. 263–271.

Chyou, H. A., Sandhu, R. S., and Butalia, T. S., 1995, “Variational Formulation and Finite Element Implementation of Pagano’s Theory of Laminated Plates,” Mech. Compos. Mater. Struct., 2 , pp. 111–137.

Pai, P. F., 1995, “A New Look at the Shear Correction Factors and Warping Functions of Anisotropic Laminates,” Int. J. Solids Struct.

[CrossRef], 32 , pp. 2295–2313.

Yong, Y. K., and Cho, Y., 1995, “Higher-Order Partial Hybrid Stress, Finite Element Formulation for Laminated Plate and Shell Analysis,” Compos. Struct., 57 , pp. 817–827.

Qi, Y., and Knight, N. F., 1996, “A Refined First-Order Shear Deformation Theory and its Justification by Plane-Strain Bending Problem of Laminated Plates,” Int. J. Solids Struct.

[CrossRef], 33 , pp. 49–64.

Aitharaju, V. R., and Averill, R. C., 1999, “C0 Zigzag Kinematic Displacement Models for the Analysis of Laminated Composites,” Mech. Compos. Mater. Struct.

[CrossRef], 6 , pp. 31–56.

Carrera, E., 2000, “A Priori vs. a Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates,” Compos. Struct.

[CrossRef], 48 , pp. 245–260.

Alfano, G., Auricchio, F., Rosati, L., and Sacco, E., 2001, “MITC Finite Elements for Laminated Composite Plates,” Int. J. Numer. Methods Eng.

[CrossRef], 50 , pp. 707–738.

Kant, T., and Swaminathan, K., 2001, “Analytical Solutions for Vibration of Laminated Composite and Sandwich Plates Based on a Higher Order Refined Theory,” Compos. Struct.

[CrossRef], 53 , pp. 73–85.

Kant, T., and Swaminathan, K., 2002, “Analytical Solutions for the Static Analysis of Laminated Composite and Sandwich Plates Based on a Higher Order Refined Theory,” Compos. Struct., 56 , pp. 329–344.

Kant, T., and Swaminathan, K., 2000, “Estimation of Transverse/Interlaminar Stresses in Laminated Composites—A Selective Review and Survey of Current Developments,” Compos. Struct.

[CrossRef], 49 , pp. 65–75.

Kant, T., and Ramesh, C. K., 1981, “Numerical Integration of Linear Boundary Value Problems in Solid Mechanics by Segmentation Method,” Int. J. Numer. Methods Eng., 17 , pp. 1233–1256.

Zienkiewicz, O. C., and Taylor, R. L., 2005, "*The Finite Element Method for Solids and Structural Mechanics*", 6th ed., Elsevier Butterworth Heinemann, Oxford.