Lin, Y. K., and Cai, G. Q., 1988, “Exact Stationary Response Solution for Second Order Nonlinear Systems Under Parametric and External White Noise Excitations: Part II,” ASME J. Appl. Mech., 55 , pp. 702–705.

Kloeden, P. E., and Platen, E., 1999, "*Numerical Solution of Stochastic Differential Equations*", Springer, New York.

Milstein, G. N., 1995, "*Numerical Integration of Stochastic Differential Equations*", Kluwer, Dordrecht.

Maruyama, G., 1955, “Continuous Markov Processes and Stochastic Equations,” Rend. Circ. Mat. Palermo, 4 , pp. 48–90.

Gard, T. C., 1988, "*Introduction to Stochastic Differential Equations*", Marcel Dekker, New York.

Rumelin, W., 1982, “Numerical Treatment of Stochastic Differential Equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 19 (3), pp. 604–613.

Burrage, K., Burrage, P., and Tian, T., 2004, “Numerical Methods for Strong Solutions of Stochastic Differential Equations: An Overview,” Proc. R. Soc. London, Ser. A, 460 (2041), pp. 373–402.

Tocino, A., and Vigo-Aguiar, J., 2002, “Weak Second Order Conditions for Stochastic Runge-Kutta Methods,” SIAM J. Sci. Comput. (USA)

[CrossRef], 24 (2), pp. 507–523.

Roy, D., and Dash, M. K., 2005, “Explorations of a Family of Stochastic Newmark Methods in Engineering Dynamics,” Comput. Methods Appl. Mech. Eng., 194 (45–47), pp. 4758–4796.

Roy, D., 2006, “A Family of Weak Stochastic Newmark Methods for Simplified and Efficient Monte Carlo Simulations of Oscillators,” Int. J. Numer. Methods Eng., 67 (3), pp. 364–399.

Burrage, K., and Tian, T., 2004, “Implicit Stochastic Runge-Kutta Methods for Stochastic Differential Equations,” BIT Numer. Math., 44 (1), pp. 21–39.

Milstein, G. N., Platen, E., and Schurz, H., 1998, “Balanced Implicit Methods for Stiff Stochastic Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 35 (3), pp. 1010–1019.

Oksendal, B., 2004, "*Stochastic Differential Equations—An Introduction With Applications*", 6th ed., Springer, New York.

Socha, L., 2005, “Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory,” Appl. Mech. Rev.

[CrossRef], 58 (3), pp. 178–205.

Socha, L., 2005, “Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part II: Applications,” Appl. Mech. Rev.

[CrossRef], 58 (5), pp. 303–353.

Socha, L., and Pawleta, M., 1994, “Corrected Equivalent Linearization,” Mach. Dyn. Probl., 7 , pp. 149–161.

Elishakoff, I., and Colojani, P., 1997, “Stochastic Linearization Critically Re-examined,” Chaos, Solitons Fractals

[CrossRef], 8 (12), pp. 1957–1972.

Crandall, S. H., 2001, “Is Stochastic Equivalent Linearization a Subtly Flawed Procedure,” Probab. Eng. Mech.

[CrossRef], 16 (2), pp. 169–176.

Falsone, G., and Elishakoff, I., 1994, “Modified Stochastic Linearization Technique for Coloured Noise Excitation of Duffing Oscillator,” Int. J. Non-Linear Mech.

[CrossRef], 29 (1), pp. 65–69.

Apetaur, M., and Opicka, F., 1983, “Linearization of Nonlinear Stochastically Excited Dynamic Systems,” J. Sound Vib.

[CrossRef], 86 (4), pp. (563–585).

Socha, L., 1999, “Statistical and Equivalent Linearization Techniques With Probability Density Criteria,” J. Theor. Appl. Mech., 37 , pp. 369–382.

Anh, N. D., and Hung, L. X., 2003, “An Improved Criterion of Gaussian Equivalent Linearization for Analysis of Nonlinear Stochastic Systems,” J. Sound Vib.

[CrossRef], 268 (1), pp. 177–200.

Kazakov, I. E., 1998, “An Extension of the Method of Statistical Linearization,” Avtom. Telemekh., 59 , pp. 220–224.

Grundmann, H., Hartmann, C., and Waubke, H., 1998, “Structures Subjected to Stationary Stochastic Loadings. Preliminary Assessment by Statistical Linearization Combined With an Evolutionary Algorithm,” Comput. Struct.

[CrossRef], 67 (1–3), pp. 53–64.

Iyengar, R. N., and Roy, D., 1996, “Conditional Linearization in Nonlinear Random Vibration,” J. Eng. Mech., 122 (3), pp. 197–200.

Roy, D., 2000, “Exploration of the Phase-Space Linearization Method for Deterministic and Stochastic Nonlinear Dynamical Systems,” Nonlinear Dyn.

[CrossRef], 23 (3), pp. 225–258.

Roy, D., 2001, “A New Numeric-Analytical Principle for Nonlinear Deterministic and Stochastic Dynamical Systems,” Proc. R. Soc. London, Ser. A, 457 (2007), pp. 539–566.

Roy, D., 2004, “A Family of Lower- and Higher-Order Transversal Linearization Techniques in Non-Linear Stochastic Engineering Dynamics,” Int. J. Numer. Methods Eng., 61 (5), pp. 764–790.

Ibrahim, R. A., 1978, “Stationary Response of a Randomly Parametric Excited Nonlinear System,” ASME J. Appl. Mech., 45 , pp. 910–916.

Zhu, W. Q., 1988, “Stochastic Averaging Methods in Random Vibration” Appl. Mech. Rev., 41 , pp. 189–199.

Bernard, P., and Wu, L., 1998, “Stochastic Linearization: The Theory,” J. Appl. Probab.

[CrossRef], 35 (3), pp. 718–730.

Rubinstein, R. Y., 1981, "*Simulation and the Monte Carlo Method*", Wiley, New York.

Yazici, A., Atlas, I., and Ergenc, T., 2005, “2d Polynomial Interpolation: A Symbolic Approach with Mathematica,” Lect. Notes Comput. Sci., 3482 , pp. 463–471.

Wang, R., and Zhang, Z., 2000, “Exact Stationary Solutions of the Fokker-Planck Equation for Nonlinear Oscillators Under Stochastic Parametric and External Excitations,” Nonlinearity, 13 (3), pp. 907–920.

Roy, D., and Dash, M. K., 2002, “A Stochastic Newmark Method for Engineering Dynamical Systems” J. Sound Vib., 249 (1), pp. 83–100.

Roy, D., 2003, “A Weak Form of Stochastic Newmark Method With Applications to Engineering Dynamical Systems,” Appl. Math. Model., 27 (6), pp. 421–436.