Parton, V. Z., 1976, “Fracture Mechanics of Piezoelectric Materials,” Acta Astronaut.

[CrossRef], 3 , pp. 671–683.

Deeg, W. F., 1980, “The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids,” Ph.D. dissertation, Stanford University, Stanford, CA.

Pak, Y. E., 1990, “Crack Extension Force in a Piezoelectric Material,” J. Appl. Mech., 57 , pp. 647–653.

Pak, Y. E., 1992, “Linear Electro-elastic Fracture Mechanics of Piezoelectric Materials,” Int. J. Fract.

[CrossRef], 54 , pp. 79–100.

Sosa, H., 1991, “Plane Problems in Piezoelectric Media with Defects,” Int. J. Solids Struct.

[CrossRef], 28 , pp. 491–505.

Sosa, H., 1992, “On the Fracture Mechanics of Piezoelectric Solids,” Int. J. Solids Struct.

[CrossRef], 29 , pp. 2613–2622.

Suo, Z., Kuo, C.-M., Barnett, D. M., and Willis, J. R., 1992, “Fracture Mechanics for Piezoelectric Ceramics,” J. Mech. Phys. Solids

[CrossRef], 40 , pp. 739–765.

Park, S. B., and Sun, C. T., 1995, “Effect of Electric Field on Fracture of Piezoelectric Ceramics,” Int. J. Fract.

[CrossRef], 70 , pp. 203–216.

McMeeking, R. M., 1989, “Electrostrictive Stress near Crack-like Flaws,” J. Appl. Math., 40 , pp. 615–627.

Zhang, T.-Y., and Hack, J. E., 1992, “Mode III Cracks in Piezoelectric Materials,” J. Appl. Phys.

[CrossRef], 71 , pp. 5865–5870.

Zhang, T.-Y., 1994, “Effect of Sample Width on the Energy Release Rate and Electric Boundary Conditions along Crack Surfaces in Piezoelectric Materials,” Int. J. Fract.

[CrossRef], 66 , pp. 33–38.

Dunn, M. L., 1994, “The Effect of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solid,” Eng. Fract. Mech.

[CrossRef], 48 , pp. 25–39.

Sosa, H., and Khutoryansky, N., 1996, “New Developments Concerning Piezoelectric Materials with Defects,” Int. J. Solids Struct.

[CrossRef], 33 , pp. 3399–3414.

Zhang, T.-Y., Zhao, M.-H., and Tong, P., 2001, “Fracture of Piezoelectric Ceramics,” Adv. Appl. Mech., 38 , pp. 147–289.

Li, S. F., and Mataga, P. A., 1996, “Dynamic Crack Propagation in Piezoelectric Materials. Part I: Electrode Solution,” J. Mech. Phys. Solids

[CrossRef], 44 , pp. 1799–1830.

Li, S. F., and Mataga, P. A., 1996, “Dynamic Crack Propagation in Piezoelectric Materials. Part II: Vacuum,” J. Mech. Phys. Solids

[CrossRef], 44 , pp. 1831–1866.

Wang, X. D., and Meguid, S. A., 2000, “Effect of Electromechanical Coupling on the Dynamic Interaction of Cracks in Piezoelectric Materials,” Acta Mech.

[CrossRef], 143 , pp. 1–15.

Li, C. Y., and Weng, G. J., 2002, “Yoffe-type Moving Crack in a Functionally Graded Piezoelectric Material,” Proc. R. Soc. London, Ser. A

[CrossRef], 458 , pp. 381–399.

Parton, V. Z., and Kudryavtsev, B. A., 1988, "*Electromagnetoelasticity*", Gordon and Breach, New York.

Hao, T. H., and Shen, Z. Y., 1994, “A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications,” Eng. Fract. Mech.

[CrossRef], 47 , pp. 793–802.

Shindo, Y., Tanaka, K., and Narita, F., 1997, “Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip with a Finite Crack under Longitudinal Shear,” Acta Mech.

[CrossRef], 120 , pp. 31–45.

Yang, F., 2001, “Fracture Mechanics for a Mode I crack in Piezoelectric Materials,” Int. J. Solids Struct.

[CrossRef], 38 , pp. 3813–3830.

Shindo, Y., Watanabe, K., and Narita, F., 2000, “Electroelastic Analysis of a Piezoelectric Ceramic Strip with a Central Crack,” Int. J. Eng. Sci.

[CrossRef], 38 , pp. 1–19.

McMeeking, R. M., 2001, “Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials,” Int. J. Fract.

[CrossRef], 108 , pp. 25–41.

Xu, X.-L., and Rajapakse, R. K. N. D., 2001, “On a Plane Crack in Piezoelectric Solids,” Int. J. Solids Struct.

[CrossRef], 38 , pp. 7643–7658.

Wang, X. D., and Jiang, L. Y., 2001, “Fracture Behavior of Cracks in Piezoelectric Media with Electromechanically Coupled Boundary Conditions,” Proc. R. Soc. London, Ser. A

[CrossRef], 458 , pp. 2545–2560.

Dascalu, C., and Homentcovschi, D., 2002, “An Intermediate Crack Model for Flaws in Piezoelectric Solids,” Acta Mech.

[CrossRef], 154 , pp. 85–100.

Wang, B. L., and Mai, Y.-W., 2003, “On the Electrical Boundary Conditions on the Crack Surfaces in Piezoelectric Ceramics,” Int. J. Eng. Sci.

[CrossRef], 41 , pp. 633–652.

Zhang, T. Y., and Cao, C. F., 2004, “Fracture Behaviors of Piezoelectric Materials,” Theor. Appl. Fract. Mech.

[CrossRef], 41 , pp. 339–379.

Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. London, Ser. A, 241 , pp. 376–396.

Wang, B., 1992, “Three-Dimensional Analysis of a Flat Elliptical Crack in a Piezoelectric Material,” Int. J. Eng. Sci.

[CrossRef], 30 , pp. 781–791.

Kogan, L., Hui, C.-Y., and Molkov, V., 1996, “Stress and Induced Field of a Spheroidal Inclusion or a Penny-Shaped Crack in a Transversely Isotropic Piezoelectric Material,” Int. J. Solids Struct.

[CrossRef], 33 , pp. 2719–2737.

Huang, J. H., 1997, “A Fracture Criterion of a Penny-shaped Crack in Transversely Isotropic Piezoelectric Media,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 2631–2644.

Chiang, C. R., and Weng, G. J., 2005, “The Nature of Stress and Electric-displacement Concentration around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material,” Int. J. Fract.

[CrossRef], 134 , pp. 319–337.

Dunn, M. L., and Wienecke, H. A., 1997, “Inclusions and Inhomogeneity in Transversely Isotropic Piezoelectric Solids,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 3571–3582.

Chen, W. Q., and Shioya, T., 1999, “Fundamental Solution of a Penny-shaped Crack in a Piezoelectric Medium,” J. Mech. Phys. Solids

[CrossRef], 47 , pp. 1459–1475.

Chen, W. Q., and Shioya, T., 1999, “Complete and Exact Solutions of a Penny-Shaped Crack in a Piezoelectric Solid: Antisymmetric Shear Loadings,” Int. J. Solids Struct.

[CrossRef], 37 , pp. 2603–2619.

Fabricant, V. I., 1989, "*Application of Potential Theory in Mechanics: A Selection of New Resutls*", Kluwer Academic, Dordrecht, The Netherlands.

Ding, H. J., Chen, B., and Liang, J., 1997, “On the Green’s Function for Two-phase Transversely Isotropic Piezoelectric Medi,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 3041–3057.

Zhao, M. H., Shen, Y. P., Liu, G. N., and Liu, Y. J., 1999, “Crack Analysis in Semi-infinite Transversely Isotropic Piezoelectric Solid II. Penny-shaped Crack near the Surface,” Theor. Appl. Fract. Mech.

[CrossRef], 32 , pp. 233–240.

Yang, J. H., and Lee, K. Y., 2001, “Penny-Shaped Crack in a Three-Dimensional Piezoelectric Strip under In-plane Normal Loadings,” Acta Mech.

[CrossRef], 148 , pp. 187–197.

Yang, J. H., and Lee, K. Y., 2002, “Three-Dimensional Non-Aaxisymmetric Behavior of a Penny-Shaped Crack in a Piezoelectric Strip Subjected to In-Plane Loads,” Eur. J. Mech. A/Solids

[CrossRef], 21 , pp. 223–237.

Lin, S., Narita, F., and Shindo, Y., 2003, “Electroelastic Analysis of a Penny-shaped Crack in a Piezoelectric Ceramic under Mode I Loading,” Mech. Res. Commun.

[CrossRef], 30 , pp. 371–386.

Li, X. F., and Lee, K. Y., 2004, “Effects of Electric Field on Crack Growth for a Penny-shaped Dielectric Crack in a Piezoelectric Layer,” J. Mech. Phys. Solids

[CrossRef], 52 , pp. 2079–2100.

Chen, W. Q., and Lim, C. W., 2005, “3D Point Force Solution for a Permeable Penny-Shaped Crack Embedded in an Infinite Transversely Isotropic Piezoelectric Medium,” Int. J. Fract.

[CrossRef], 131 , pp. 231–246.

Hwang, S. C., Lynch, C. S., and McMeeking, R. M., 1995, “Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model,” Acta Metall. Mater.

[CrossRef], 43 , pp. 2073–2084.

Li, J., and Weng, G. J., 1999, “A Theory of Domain Switch for the Nonlinear Behavior of Ferroelectrics,” Proc. R. Soc. London, Ser. A

[CrossRef], 455 , pp. 3493–3511.

Li, W. F., and Weng, G. J., 2002, “A Theory of Ferroelectric Hysteresis with a Superimposed Stress,” J. Appl. Phys.

[CrossRef], 91 , pp. 3806–3815.

Ikeda, T., 1996, "*Fundamentals of Piezoelectricity*", Oxford University Press, Oxford, UK.

Nye, J. F., 1979, "*Physical Properties of Crystals*", Oxford University Press, Oxford, UK.

Sneddon, I. N., 1951, "*Fourier Transforms*", McGraw-Hill, New York.

Stroh, A. N., 1958, “Dislocations and Cracks in Anisotropic Elasticity,” Philos. Mag., 3 , pp. 625–646.

Stroh, A. N., 1962, “Steady State Problems in Anisotropic Elasticity,” J. Math. Phys.

[CrossRef], 41 , pp. 77–103.

Lekhnitskii, S. G., 1963, "*Theory of Elasticity of an Anisotropic Elastic Body*", Holden-Day, San Francisco, CA.

Chiang, C. R., 2004, “Some Crack Problems in Transversely Isotropic Solids,” Acta Mech., 170 , pp. 1–9.

Kassir, M. K., and Sih, G. C., 1975, "*Three-Dimensional Crack Problems*", Noordoff, Leyden, The Netherlands.

McMeeking, R. M., 1999, “Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen,” Eng. Fract. Mech.

[CrossRef], 64 , pp. 217–244.

Dunn, M. L., and Taya, M., 1993, “An Analysis of Piezoelectric Composite Materials Containing Ellipsoidal Inhomogeneities,” Proc. R. Soc. London, Ser. A

[CrossRef], 443 , pp. 265–287.