Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London, Ser. A, 241 , pp. 376–396.

Miller, R. E., and Shenoy, V. B., 2000, “Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology

[CrossRef], 11 (3), pp. 139–147.

Cammarata, R. C., Sieradzki, K., and Spaepen, F., 2000, “Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films,” J. Appl. Phys.

[CrossRef], 87 (3), pp. 1227–1234.

Kukta, R., Kouris, D., and Sieradzki, K., 2003, “Adatoms and Their Relation to Surface Stress,” J. Mech. Phys. Solids

[CrossRef], 51 (7), pp. 1243–1266.

Kouris, D., Peralta, A., and Sieradzki, K., 2000, “Surface Islands and Their Elastic Interaction With Adatoms,” Surf. Sci.

[CrossRef], 445 , pp. 420–429.

Sharma, P., and Ganti, S., 2002, “Interfacial Elasticity Corrections to the Elastic States of Quantum Dots,” Phys. Status Solidi B

[CrossRef], 234 , pp. R10–12.

Sharma, P., Ganti, S., and Bhate, N., 2003, “The Effect of Surfaces on the Size-Dependent Elastic State of (Nano) Inhomogeneities,” Appl. Phys. Lett.

[CrossRef], 82 , pp. 535–537.

Sharma, P., and Ganti, S., 2004, “Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface∕Interface Energies,” J. Appl. Mech.

[CrossRef], 71 , p. 663.

He, L. H., Lim, C. W., and Wu, B. S., 2004, “A Continuum Model for Size-Dependent Deformation of Elastic Films of Nano-Scale Thickness,” Int. J. Solids Struct.

[CrossRef], 41 (3–4), pp. 847–857.

Lim, C. W., and He, L. H., 2004, “Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness,” Int. J. Mech. Sci.

[CrossRef], 46 (11), pp. 1715–1726.

Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L., 2005, “Eshelby Formalism for Nano-Inhomogeneities,” Proc. R. Soc. London, Ser. A

[CrossRef], 461 (2062), pp. 3335–3353.

Lim, C. W., Li, Z. R., and He, L. H., 2005, “Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress,” Int. J. Solids Struct. (to be published).

Dingreville, R., Qu, J., and Cherkaoui, M., 2005, “Surface Free Energy and its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films,” J. Mech. Phys. Solids

[CrossRef], 53 (8), pp. 1827–1854.

Mura, T., 1987, "*Micromechanics of Defects in Solids*", Martinus Nijhoff, Hague, Netherlands.

Nemat-Nasser, S., and Hori, M., 1999, "*Micromechanics: Overall Properties of Heterogeneous Solids*", Elsevier Science, New York.

Markov, K., and Preziosi, L., 2000, "*Heterogeneous Media: Micromechanics Modeling Methods and Simulations*", Birkhauser Verlag, Switzerland.

Weng, G.J., Taya, M., and Abe, H., eds, 1990, "*Micromechanics and Inhomogeneity: The Toshio Mura Anniversary Volume*", Springer-Verlag, Berlin.

Bilby, B. A., Miller, K. J., and Willis, J. R., 1984, IUTAM∕IFC∕ICM Symposium on Fundamentals of Deformation and Fracture (Sheffield, England, 2–5 April 1984, Eshelby Memorial Symposium) , Cambridge University Press, Cambridge.

Mura, T., Shodja, H. M., and Hirose, Y., 1996, “Inclusion Problems,” Appl. Mech. Rev., 49 (10), pp. S118–S127.

Mura, T., 2000, “Some New Problems in the Micromechanics,” Mater. Sci. Eng., A

[CrossRef], 285 (1), pp. 224–228(5).

Gurtin, M. E., and Murdoch, A. I., 1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal., 59 , pp. 291–323.

Murdoch, A. I., 1976, “The Propagation of Surface Waves in Bodies With Material Boundaries,” J. Mech. Phys. Solids

[CrossRef], 24 , pp. 137–146.

Gurtin, M. E., Weissmuller, J., and Larche, F., 1998, “The General Theory of Curved Deformable Interfaces in Solids at Equilibrium,” Philos. Mag. A

[CrossRef], 78 , pp. 1093–1109.

Ibach, H., 1997, “The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures,” Surf. Sci. Rep.

[CrossRef], 29 (5–6), pp. 193–263.

Kleinert, H., 1989, "*Gauge Field in Condensed Matter*", World Scientific, Singapore, Vol. 2 .

Chandrasekhar, S., 1969, "*Ellipsoidal Figures of Equilibrium*", Yale University Press, New Haven and London.

Yang, F., 2004, “Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations,” J. Appl. Phys.

[CrossRef], 95 (7), pp. 3516–3520.

Cahn, J. W., and Larche, F., 1982, “Surface Stress and the Chemical Equilibrium of Small Crystals. II. Solid Particles Embedded in a Solid Matrix,” Acta Metall.

[CrossRef], 30 (1) pp. 51–56.

Chandrasekhar, S., 1965, “The Stability of "*Proceedings of the Royal Society of London*",” Vol. A286 , p. 1.

Rosenkilde, C. E., 1967a, “Surface-Energy Tensors,” J. Math. Phys.

[CrossRef], 8 (1), pp. 84–88.

Rosenkilde, C. E., 1967b, “Surface-Energy Tensors,” J. Math. Phys.

[CrossRef], 8 (1), pp. 88–97.

MacMillan, W. D., 1958, "*The Theory of the Potential*", Dover, New York.

Milgrom, M., and Shtrikman, S., 1992, “The Energy of Inclusions in Linear Media Exact Shape-Independent Relations,” J. Mech. Phys. Solids, 40 , pp. 927–937.

Sendeckyj, G. P., 1967, “Ellipsoidal Inhomogeneity Problem,” Ph.D. Dissertation, Northwestern University, Evanston.

Singh, J., 1992, "*Physics of Semiconductors and their Heterostructures*", McGraw-Hill, New York.

Andreev, A. D., Downes, J. R., Faux, D. A., and O’Reilly, E. P., 1999, “Strain Distributions in Quantum Dots of Arbitrary Shape,” J. Appl. Phys.

[CrossRef], 86 (1), pp. 297–305.