Hu, H. C., 1954, “On the General Theory of Elasticity for a Spherically Isotropic Medium,” Acta Sci. Sin., 3 , pp. 247–260.

Hata, T., 1991, “Thermal Shock in a Hollow Sphere Caused by Rapid Uniform Heating,” ASME J. Appl. Mech., 58 , pp. 64–69.

Hata, T., 1993, “Stress-Focusing Effect in a Uniformly Heated Transversely Isotropic Sphere,” Int. J. Solids Struct.

[CrossRef], 30 , pp. 1419–1428.

Hata, T., 1997, “Stress-Focusing Effect Due to an Instantaneous Concentrated Heat Source in a Sphere,” J. Therm. Stresses, 20 , pp. 269–279.

Sherief, H. H., and Ezzat, M. A., 1996, “Thermal-Shock Problem in Magnetothermoelaticity with Thermal Relaxation,” Int. J. Solids Struct., 33 , pp. 4449–4459.

Wang, X., 2000, “Dynamic Thermostress-concentration Effect in a Spherically Isotropic Sphere,” Acta Mech. Sin., 32 , pp. 245–250 (in Chinese).

Heyliger, P., and Wu, Y. C., 1999, “Electroelastic Fields in Layered Piezoelectric Spheres,” Ind. J. Eng. Mater. Sci., 37 , pp. 143–161.

Ding, H. J., Wang, H. M., and Chen, W. Q., 2003, “Dynamic Response of a Pyroelectric Hollow Sphere Under Radial Deformation,” Eur. J. Mech. A/Solids, 22 , pp. 617–631.

Ding, H. J., Wang, H. M., and Chen, W. Q., 2003, “Dynamic Response of a Functionally Graded Pyroelectric Hollow Sphere for Spherically Symmetric Problems,” Int. J. Mech. Sci., 45 , pp. 1029–1051.

Dai, H. L., and Wang, X., 2004, “Dynamic Responses of Piezoelectric Hollow Cylinders in an Axial Magnetic Field,” Int. J. Solids Struct., 41 , pp. 5231–5246.

Dai, H. L., and Wang, X., 2005, “Dynamic Wave Propagation in Piezoelectric Hollow Spheres Subjected to Thermal Shock and Electric Excitation,” Struct. Eng. Mech., pp. 441–457.

Dai, H. L., and Wang, X., 2005, “Stress Wave Propagation in Laminated Piezoelectric Spherical Shells Under Thermal Shock and Electric Excitation,” Eur. J. Mech. A/Solids, 24 , pp. 263–276.

Lekhnitskii, S. G., 1981, "*Theory of Elasticity of an Anisotropic Body*", Mir Publishers, Moscow.

Cinelli, G., 1965, “An Extension of the Finite Hankel Transform and Application,” Ind. J. Eng. Mater. Sci., 3 , pp. 539–559.

Sinha, D. K., 1962, “Note on the Radial Deformation of a Piezoelectric, Polarized Spherical Shell with a Symmetrical Temperature Distribution,” J. Acoust. Soc. Am.

[CrossRef], 34 , pp. 1073–1075.

Chen, W. Q., and Shioya, T., 2001, “Piezothermoelastic Behavior of a Pyroelectric Spherical Shell,” J. Therm. Stresses, 24 , pp. 105–120.

Ezzat, M. A., 1997, “Generation of Generalized Magnetothermoelastic Waves by Thermal Shock in a Perfectly Conducting Half Space,” J. Therm. Stresses, 20 (6), pp. 633–647.

John, K. D., 1984, "*Electromagnetics*", McGraw-Hill, New York.

Dunn, M. L., and Taya, M., 1994, “Electroelastic Field Concentrations in and Around Inhomogeneties in Piezoelectric Solids,” Appl. Mech. Rev., 61 , pp. 474–475.

Eringen, A. C., and Suhubi, E. S., 1975, "*Electrodynamics*", Vol. 2 . Academic Press, New York, p. pp. 440.

Kress, R., 1989, "*Linear Integral Equation*" (Applied Mathematical Sciences, Vol. 82 ), Springer-Verlag, Berlin.

Ding, H. J., Wang, H. M., and Hou, P. F., 2003, “The Dynamic Response of Piezoelectric Hollow Cylinders for Axisymmetric Plane Strain Problems,” Int. J. Solids Struct., 40 , pp. 105–123.