Kawasaki, A., and Watanabe, R., 1987, “Finite Element Analysis of Thermal Stress of the Metal/Ceramic Multi-Layer Composites With Compositional Gradients,” J. Jpn. Inst. Met., 51 , pp. 525–529.

Uemura, S., 2003, “The Activities of FGM on New Application,” Mater. Sci. Forum, 423–425 , pp. 1–10.

Erdogan, F., and Wu, B. H., 1997, “The Surface Crack Problem for a Plate With Functionally Graded Properties,” ASME J. Appl. Mech., 64 , pp. 449–456.

Jin, Z. H., and Batra, R. C., 1996, “Some Basic Fracture Mechanics Concepts in Functionally Graded Materials,” J. Mech. Phys. Solids

[CrossRef], 44 , pp. 1221–1235.

Jin, Z. H., and Noda, N., 1994, “Crack-Tip Singular Fields in Nonhomogeneous Materials,” ASME J. Appl. Mech., 61 , pp. 738–740.

Delale, F., and Erdogan, F., 1983, “The Crack Problem for a Nonhomogeneous Plane,” ASME J. Appl. Mech., 50 , pp. 609–614.

Wang, B. L., Mai, Y.-W., and Noda, N., 2002, “Fracture Mechanics Analysis Model for Functionally Graded Materials With Arbitrarily Distributed Properties,” Int. J. Fract., 116 , pp. 161–177.

Butcher, R. J., Rousseau, C. E., and Tippur, H. V., 1999, “A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis,” Acta Mater., 47 , pp. 259–268.

Chalivendra, V. B., Shukla, A., Bose, A., and Parameswaran, V., 2003, “Processing and Mechanical Characterization of Lightweight Polyurethane Composites,” J. Mater. Sci., 38 , pp. 1631–1643.

Parameswaran, V., and Shukla, A., 1998, “Dynamic Fracture of a Functionally Gradient Material Having Discrete Property Variation,” J. Mater. Sci.

[CrossRef], 33 , pp. 3303–3311.

Lambros, J., Santare, M. H., Li, H., and Sapna, G., 1999, “A Novel Technique for the Fabrication of Laboratory Scale Functionally Graded Materials,” Exp. Mech., 39 , pp. 183–189.

Li, H., Lambros, J., Cheeseman, B. A., and Santare, M. H., 2000, “Experimental Investigation of the Quasi-Static Fracture of Functionally Graded Materials,” Int. J. Solids Struct.

[CrossRef], 37 , pp. 3715–3732.

Abanto-Bueno, J., and Lambros, J., (2005), “Parameters Controlling Fracture Resistance Curves in Functionally Graded Materials Under Mode I Loading,” International Journal of Solids and Structures (in press).

Camacho, G. T., and Ortiz, M., 1996, “Computational Modelling of Impact Damage in Brittle Materials,” Int. J. Solids Struct.

[CrossRef], 33 , pp. 2899–2938.

Xu, X. P., and Needleman, A., 1996, “Numerical Simulations of Dynamic Crack Growth Along an Interface,” Int. J. Fract.

[CrossRef], 74 , pp. 289–324.

Geubelle, P. H., and Baylor, J. S., 1998, “Impact-Induced Delamination of Composites: A 2D Simulation,” Composites, Part B

[CrossRef], 29B , pp. 589–602.

Roy, Y. A., and Dodds, R. H., 2001, “Simulation of Ductile Crack Growth in Thin Aluminum Panels Using 3-D Surface Cohesive Elements,” Int. J. Fract.

[CrossRef], 110 , pp. 21–45.

Jin, Z.-H., Paulino, G. H., and Dodds, R. H., 2002, “Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model,” ASME J. Appl. Mech.

[CrossRef], 69 , pp. 370–379.

Tvergaard, V., 2002, “Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids,” Eng. Fract. Mech.

[CrossRef], 69 , pp. 1635–1645.

Williams, J. G., and Hadavinia, H., 2002, “Analytical Solutions for Cohesive Zone Models,” J. Mech. Phys. Solids, 50 , pp. 809–825.

Kandula, S. S. V., Abanto-Bueno, J., Geubelle, P. H., and Lambros, J., 2005, “Cohesive Modeling of Dynamic Fracture in Functionally Graded Materials,” Int. J. Fract., 132 , pp. 275–296.

Bi, X., Li, Z., Geubelle, P. H., and Lambros, J., 2002, “Dynamic Fiber Debonding and Frictional Push-Out in Model Composite Systems: Numerical Simulations,” Mech. Mater., 34 , pp. 433–446.

Pandya, K. C., and Williams, J. G., 2000, “Cohesive Modeling of Crack Growth in Polymers: Part 1—Experimental Measurement of the Cohesive Law,” Plast. Rubber Compos., 29 , pp. 439–446.

Pandya, K. C., and Williams, J. G., 2000, “Measurement of Cohesive Zone Parameters in Tough Polyethylene,” Polym. Eng. Sci., 40 , pp. 1765–1776.

Ivankovic, A., Pandya, K. C., and Williams, J. G., 2004, “Crack Growth Predictions in Polyethylene Using Measured Traction Separation Curves,” Eng. Fract. Mech., 71 , pp. 657–668.

Jin, Z.-H., Paulino, G. H., and Dodds, R. H., 2003, “Cohesive Fracture Modeling of Elastic Plastic Crack Growth in Functionally Graded Materials,” Eng. Fract. Mech.

[CrossRef], 70 , pp. 269–283.

Jin, Z. H., and Dodds, R. H., 2004, “Crack Growth Resistance Behavior of a Functionally Graded Material: Computational Studies,” Eng. Fract. Mech., 71 , pp. 1651–1672.

Wang, Z., and Nakamura, T., 2004, “Simulations of Crack Propagation in Elastic-Plastic Graded Materials,” Mech. Mater., 36 , pp. 601–622.

Sutton, M., Wolters, W., Peters, W., Ranson, W., and McNeill, S., 1988, “Determination of Displacements Using an Improved Digital Image Correlation Method,” Image Vis. Comput.

[CrossRef], 1 , pp. 133–139.

Bruck, H., McNeill, S., Sutton, M., and Peters, W., 1989, “Digital Image Correlation Using Newton-Raphson Method of Partial-Differential Correction,” Exp. Mech., 29 , pp. 261–267.

Eischen, J. W., 1987, “Fracture of Nonhomogeneous Materials,” Int. J. Fract., 34 , pp. 3–22.

Erdogan, F., 1995, “Fracture Mechanics of Functionally Graded Materials,” Composites Eng., 5 , pp. 753–770.

Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids

[CrossRef], 8 , pp. 100–104.

Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture,” Adv. Appl. Mech., 7 , pp. 55–129.

Maiti, S., and Geubelle, P. H., 2005, “A Cohesive Model for Fatigue Failure of Polymers,” Eng. Fract. Mech., 72 , pp. 691–708.

Domininghaus, H., 1993, "*Plastics for Engineers: Materials, Properties and Applications*", Hanser Publishers, Munich.