Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London, Ser. A, 241 , pp. 376–396.

Mura, T., 1987, "*Micromechanics of Defects in Solids*", 2nd ed., Nijhoff, Dordrecht.

Willis, J. R., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Adv. Appl. Mech., 21 , pp. 1–78.

Reid, A. C. E., and Gooding, R. J., 1992, “Inclusion Problem in a Two-Dimensional Nonlocal Elastic Solid,” Phys. Rev. B

[CrossRef], 46 (10), pp. 6045–6049.

Sun, Y. Q., Gu, X. M., and Hazzledine, P. M., 2002, “Displacement Field Inside a Spherical Dislocation Cage and the Eshelby Tensor,” Phys. Rev. B

[CrossRef], 65 (22), pp. 220103–1–220103-4.

Ru, C. Q., 1999, “Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane,” ASME J. Appl. Mech., 66 (2), pp. 315–322.

Owen, D. R. J., 1972, “Analysis of Fibre-Reinforced Materials by an Initial Strain Method,” Fibre Sci. Technol.

[CrossRef], 5 , pp. 37-59.

Chiu, Y. P., 1977, “On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44 , pp. 587–590.

Rodin, G., 1996, “Eshelby’s Inclusion Problem for Polygons and Polyhedra,” J. Mech. Phys. Solids

[CrossRef], 44 , pp. 1977–1995.

Mura, T., Shodja, H. M., Lin, T. Y., Safadi, A., and Makkawy, A., 1994, “The Determination of the Elastic Field of a Pentagonal Star Shaped Inclusion,” Bull. Technical University of Istanbul, 47 , pp. 267–280.

Lubarda, V. A., and Markenscoff, X., 1998, “On the Absence of Eshelby Property for Non-ellipsoidal Inclusions,” Int. J. Solids Struct.

[CrossRef], 35 , pp. 3405–3411.

Downes, J. R., and Faux, D. A., 1995, “Calculation of Strain Distributions in Multiple-Quantum-Well Strained-Layer Structures,” J. Appl. Phys.

[CrossRef], 77 (6), pp. 2444–2447.

Faux, D. A., Downes, J. R., and O’Reilly, E. P., 1996, “A Simple Method for Calculating Strain Distributions in Quantum-Wire Structures,” J. Appl. Phys.

[CrossRef], 80 (4), pp. 2515–2517.

Faux, D. A., Downes, J. R., and O’Reilly, E. P., 1997, “Analytic Solutions for Strain Distributions in Quantum-Wire structures,” J. Appl. Phys.

[CrossRef], 82 (8), pp. 3754–3762.

Faux, D. A., and Pearson, G. S., 2000, “Green’s Tensors for Anisotropic Elasticity: Application to Quantum Dots,” Phys. Rev. B

[CrossRef], 62 (8), pp. R4798–R4801.

Andreev, A. D., Downes, J. R., Faux, D. A., and O’Reilly, E. P., 1999, “Strain Distributions in Quantum Dots of Arbitrary Shape,” J. Appl. Phys.

[CrossRef], 86 (1), pp. 297–305.

Bergman, D. J., Strelniker, Y. M., and Sarychev, A. K., 1997, “Recent Advances in Strong Field Magneto-Transport in a Composite Medium,” Physica A

[CrossRef], 241 , pp. 278–283.

Coffey, M. W., 2002, “Logarithmically Perturbed Two Dimensional Oscillator Model of a Quantum-Dot Nanostructure,” Appl. Phys. Lett.

[CrossRef], 80 (7), pp. 1219–1221.

Nozaki, H., and Taya, M., 1997, “Elastic Fields in a Polygon-Shaped Inclusion with Uniform Eigenstrains,” ASME J. Appl. Mech., 64 , pp. 495–502.

Kawashita, M., and Nozaki, H., 2001, “Eshelby Tensor of a Polygonal Inclusion and Its Special Properties,” J. Elast., 64 , pp. 71–84.

Wang, M. Z., and Xu, B. X., 2004, “The Arithmetic Mean Theorem of Eshelby Tensor for a Rotational Symmetrical Inclusion,” J. Elast.

[CrossRef], 77 , pp. 13–23.

Xu, B. X., and Wang, M. Z., 2005, “The Quasi Eshelby Property for Rotational Symmetrical Inclusions of Uniform Eigencurvatures within an Infinite Plate,” Proc. R. Soc. London, Ser. A

[CrossRef], 461 , pp. 2899–2910.

Xu, B. X., and Wang, M. Z., 2005, “Special Properties of Eshelby Tensor for a Regular Polygonal Inclusion,” Acta Mech. Sin.

[CrossRef] (in English), 21 , pp. 267–271.

Ferrers, N. M., 1877, “On the Potentials of Ellipsoids, Ellipsoidal Shells, Elliptic Laminae and Elliptic Rings of Variable Densities,” Q. J. Pure Appl. Math., 14 , pp. 1–22.

Dyson, F. W., 1891, “The Potentials of Ellipsoids of Variable Densities,” Q. J. Pure Appl. Math., 25 , pp. 259–288.

Holland, A. S. B., 1980, "*Complex Function Theory*", Elsevier, New York.

Aboudi, J., 1991, "*Mechanics of Composite Materials: A Unified Micromechanical Approach*", Elsevier, Amsterdam.

Nemat-Nasser, S., and Hori, M., 1999, "*Micromechanics: Overall Properties of Heterogeneous Elastic Solids*", 2nd ed., North-Holland, Amsterdam.

Milton, G. W., 2002, "*The Theory of Composites*", Cambridge University Press, Cambridge, UK.

Torquato, S., 2002, "*Random Heterogeneous Materials: Microstructure and Macroscopic Properties*", Springer, New York.