0
TECHNICAL PAPERS

Correlation Moment Analysis and the Time Dependence of Coherence in Systems Described by Nonlinear Partial Differential Equations

[+] Author and Article Information
M. R. Belmont

School of Engineering and Computer Science, University of Exeter, Exeter EX4 4QF, UKm.r.belmont@exeter.ac.uk

J. Appl. Mech 73(2), 197-205 (May 31, 2005) (9 pages) doi:10.1115/1.2065687 History: Received September 15, 2004; Revised May 31, 2005

The work presented introduces correlation moment analysis. This technique can be employed to explore the growth of determinism from stochastic initial conditions in physical systems described by non-linear partial differential equations (PDEs) and is also applicable to wholly deterministic situations. Correlation moment analysis allows the analytic determination of the time dependence of the spatial moments of the solutions of certain types of non-linear partial differential equations. These moments provide measures of the growth of processes defined by the PDE, furthermore the results are obtained without requiring explicit solution of the PDE. The development is presented via case studies of the linear diffusion equation and the non-linear Kortweg de-Vries equation which indicate strategies for exploiting the various properties of correlation moments developed in the text. In addition, a variety of results have been developed which show how various classes of terms in PDEs affect the structure of a sequence of correlation moment equations. This allows results to be obtained about the behavior of the PDE solution, in particular how the presence of certain types of terms affects integral measures of the solution. It is also demonstrated that correlation moments provide a very simple, natural approach to determining certain subsets of conserved quantities associated with the PDEs.

Copyright © 2006 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In