Seo, K., and Mura, T., 1979, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” ASME J. Appl. Mech., 46 , pp. 568–572.

Mindlin, R. D., and Cheng, D. H., 1950, “Nuclei of Strain in the Semi-Infinite Solid,” J. Appl. Phys.

[CrossRef], 21 , pp. 926–930.

Chiu, Y. P., 1977, “On the Stress Field Due to initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44 , pp. 587–590.

Chiu, Y. P., 1978, “On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which initial Strains are Uniform,” ASME J. Appl. Mech., 45 , pp. 302–306.

Lee, S., and Hsu, C. C., 1985, “Thermoelastic Stress Due to Surface Parallelepiped Inclusions,” ASME J. Appl. Mech., 52 (1), pp. 225–228.

Mura, T., 1987, "*Micromechanics of Defects in Solids*", 2nd ed., Martinus-Nijhoff, Dordrecht.

Wu, L. Z., and Du, S. Y., 1996, “The Elastic Field in a Half-space With a Circular Cylindrical Inclusion,” ASME J. Appl. Mech., 63 (4), pp. 925–932.

Mura, T., 1997, “The Determination of the Elastic Field of a Polygonal Star Shaped Inclusion,” Mech. Res. Commun.

[CrossRef], 24 (5), pp. 473–482.

Korsunsky, A. M., 1997, “An Axisymmetric Inclusion in One of Two Perfectly Bonded Dissimilar Elastic Half-Spaces,” ASME J. Appl. Mech., 64 , pp. 697–700.

Müller, W. H., and Neumann, S., 1998, “An Approximate Analytical 3-D Solution for the Stresses and Strains in Eigenstrained Cubic Materials,” Int. J. Solids Struct., 35 (22), pp. 2931–2958.

Yoffe, E. H., 1982, “Elastic Stress Fields Caused by Indenting Brittle Materials,” Philos. Mag. A, 46 , pp. 617–628.

Sainsot, P., Jacq, C., and Nélias, D., 2002, “A Numerical Model for Elastoplastic Rough Contact,” Comput. Model. Eng. Sci., 3 (4), pp. 497–506.

Jacq, C., Nélias, D., Lormand, G., and Girodin, D., 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code,” ASME J. Tribol.

[CrossRef], 124 (4), pp. 653–667.

Yu, H. Y., and Sanday, S. C., 1991, “Elastic Fields in Joined Half-Spaces Due to Nuclei of Strain,” Proc. R. Soc. London, Ser. A, 434 (1892), pp. 503–519.

Johnson, K. L., 1996, "*Contact Mechanics*", Cambridge University Press, Cambridge, UK.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, "*Numerical Recipes in Fortran 77—The Art of Scientific Computing*", 2nd ed., Cambridge University Press, Cambridge.

Yu, H. Y., and Sanday, S. C., 1991, “Elastic Field In Joined Semi-Infinite Solids With An Inclusion,” Proc. R. Soc. London, Ser. A, 434 (1892), pp. 521–530.

Liu, S., and Wang, Q., 2003, “Transient Thermoelastic Stress Fields in a Half-Space,” ASME J. Tribol.

[CrossRef], 125 , pp. 33–43.

Liu, S., and Wang, Q., 2002, “Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm,” ASME J. Tribol.

[CrossRef], 124 , pp. 36–45.

Ju, Y., and Farris, T. N., 1996, “Spectral Analysis of Two-Dimensional Contact Problems,” ASME J. Tribol., 118 , pp. 320–328.

Nogi, T., and Kato, T., 1997, “Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model,” ASME J. Tribol., 119 , pp. 493–500.

Polonsky, I. A., and Keer, L. M., 2000, “A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts,” ASME J. Tribol.

[CrossRef], 122 , pp. 30–35.

Liu, S., Wang, Q., and Liu, G., 2000, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses,” Wear

[CrossRef], 243 (1-2), pp. 101–110.

Ahmadi, N., 1982, "*Non-Hertzian Normal and Tangential Loading of Elastic Bodies in Contact*", Ph.D. dissertation, Northwestern University, Evanston, IL.

Mindlin, R. D., and Cheng, D. H., 1950, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Phys.

[CrossRef], 21 , pp. 931–933.

MacMillan, W. D., 1930, "*Theory of the Potential*", McGraw-Hill, New York.

Lee, J. K., and Johnson, W. C., 1977, “Elastic Strain Energy and Interactions of Thin Square Plates Which Have Undergone a Simple Shear,” Scripta Metall., 11 , pp. 477–484.