Herrmann, L. R., 1965, “Elasticity Equations for Nearly Incompressible Materials by a Variational Theorem,” AIAA J.3 , pp. 1896–1900.

Simo, J. C., Taylor, R. L., and Pister, K. S., 1985, “Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-Plasticty,” Comput. Methods Appl. Mech. Eng.

[CrossRef]51 , pp. 177–208.

Arnold, D. N., Brezzi, F., and Douglas, J., 1984, “PEERS: A New Mixed Finite Element for Plane Elasticity,” Jpn. J. Ind. Appl. Math., Part 1 1 , pp. 347–367.

Cruchaga, M. A., and Onate, E., 1997, “A Finite Element Formulation for Incompressible Flow Problems Using a Generalized Streamline Operator,” Comput. Methods Appl. Mech. Eng.

[CrossRef]143 , pp. 49–67.

Kouhia, R., and Stenberg, R., 1995, “A Linear Nonconforming Finite Element Method for Nearly Incompressible Elasticity and Stokes Flow,” Comput. Methods Appl. Mech. Eng.

[CrossRef]124 , pp. 195–212.

Malkus, D. S., and Hughes, T. J., 1987, “Mixed Finite Element Methods-Reduced and Selective Integration Techniques: A Unification of Concepts,” Comput. Methods Appl. Mech. Eng.

[CrossRef]15 (1), pp. 63–81.

Stenberg, R., 1987, “On Some Three-Dimensional Finite Elements for Incompressible Media,” Comput. Methods Appl. Mech. Eng.

[CrossRef]63 , pp. 261–269.

Belytschko. T., and Branchrach, W. E., 1986, “Efficient Implementation of Quadrilaterals With High Coarse Mesh Accuracy,” Comput. Methods Appl. Mech. Eng.

[CrossRef]54 , pp. 279–301.

Belytschko, T., and Bindeman, L. P., 1991, “Assumed Strain Stabilization of the 4-Node Quadrilateral With 1-Point Quadrature for Nonlinear Problems,” Comput. Methods Appl. Mech. Eng.

[CrossRef]88 , pp. 311–340.

Hughes, T. J., 1980, “Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media,” Int. J. Numer. Methods Eng.15 , pp. 1413–1418.

Hughes, T. J., and Malkus, D. S., 1983, “A General Penalty/Mixed Equivalence Theorem for Anisotropic, Incompressible Finite Elements,” "*Hybrid and Mixed Finite Element Methods*", S.N.Atluri, R.H.Gallagher, and O.C.Zienkiewicz, eds., John Wiley, London, pp. 487–496.

Simo, J. C., and Hughes, T. J., 1986, “On the Variational Foundations of Assumed Strain Methods,” J. Appl. Mech.53 , pp. 51–54.

Simo, J. C., and Rifai, M. S., 1990, “A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes,” Int. J. Numer. Methods Eng.29 , pp. 1595–1636.

Brezzi, F., and Bathe, K. J., 1990, “A Discourse on the Stability Conditions for Mixed Finite Element Formulations,” Comput. Methods Appl. Mech. Eng.

[CrossRef]82 (1-3), pp. 27–57.

Chapelle, D., and Bathe, K. J., 1993, “The Inf-Sup Test,” Comput. Struct.

[CrossRef]47 (4-5), pp. 537–545.

Cook, R. D., 1974, “Improved Two-Dimensional Finite Element,” J. Struct. Div. ASCE100 , pp. 1851–1863.

Klaas, O., Maniatty, A. M., and Shephard, M. S., 1999, “A Stabilized Mixed Petrov-Galerkin Finite Element Method for Finite Elasticity. Formulation for Linear Displacement and Pressure Interpolation,” Comput. Methods Appl. Mech. Eng.

[CrossRef]180 , pp. 65–79.

Simo, J. C., and Armero, F., 1992, “Geometrically Nonlinear Enhanced Strain Mixed Methods and the Method of Incompatible Modes,” Int. J. Numer. Methods Eng.33 , pp. 1413–1449.

Taylor, R. L., Beresford, P. J., and Wilson, E. L., 1976, “A Nonconforming Element for Stress Analysis,” Int. J. Numer. Methods Eng.10 , pp. 1211–1219.

Brezzi, F., and Fortin, M., 1991, "*Mixed and Hybrid Finite Element Methods*", Vol. 15 , Springer Series in Computational Mathematics , Springer-Verlag, NY, 1991.

Hughes, T. J., 1987, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewoods Cliffs, NJ (Dover Edition, 2000), Chap. 4.

Hughes, T. J., and Franca, L. P., 1987, “A New Finite Element Formulation for Computational Fluid Dynamics: VII. The Stokes Problem With Various Well-Posed Boundary Conditions: Symmetric Formulations That Converge for All Velocity/Pressure Spaces,” Comput. Methods Appl. Mech. Eng.

[CrossRef]65 , pp. 85–96.

Commend, S., Truty, A., and Zimmermann, T., 2004, “Stabilized Finite Elements Applied to Elastoplasticity: I. Mixed Displacement-Pressure Formulation,” Comput. Methods Appl. Mech. Eng.

[CrossRef]193 , pp. 3559–3586.

Garikipati, K., and Hughes, T. J., 2000, “A Variational Multiscale Approach to Strain Localization-Formulation For Multidimensional Problems,” Comput. Methods Appl. Mech. Eng.

[CrossRef]188 , pp. 39–60.

Hughes, T. J., 1995, “Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods,” Comput. Methods Appl. Mech. Eng.

[CrossRef]127 , pp. 387–401.

Hughes, T. J., Masud, A, and Harari, I., 1995, “Numerical Assessment of Some Membrane Elements With Drilling Degrees of Freedom,” Comput. Struct.

[CrossRef]55 (2), pp. 297–314.

Kasper, E. P., and Taylor, R. L., 2000, “A Mixed-Enhanced Strain Method. Part I: Geometrically Linear Problems,” Comput. Struct.

[CrossRef]75 , pp. 237–250.