Stépán, G., 1997, “Delay Differential Equation Models for Machine Tool Chatter,” "*Dynamics and Chaos in Manufacturing Processes*", F.C.Moon, ed., Wiley, New York, pp. 165–191.

Olgac, N., Elmali, H., Hosek, M., and Renzulli, M., 1997, “Active Vibration Control of Distributed Systems Using Delayed Resonator With Acceleration Feedback,” ASME J. Dyn. Syst., Meas., Control, 119 , pp. 380–389.

Santos, O., and Mondié, S., 2000, “Control Laws Involving Distributed Time Delays: Robustness of Implementation,” "*Proc. Amer. Control Conf*", Chicago, IL, IEEE, Piscataway, NJ, pp. 2479–2480.

Insperger, T., and Stépán, G., 2000, “Remote Control of Periodic Robot Motion,” "*Proc. Thirteenth Sympos. on Theory and Practice of Robots and Manipulators*", Zakopane, pp. 197–203.

Batzel, J. J., and Tran, H. T., 2000, “Stability of The Human Respiratory Control System. I: Analysis of a Two-Dimensional Delay State-Space Model,” J. Math. Biol.

[CrossRef]41 , pp. 45–79.

Szydlowski, M., and Krawiec, A., 2001, “The Kaldor-Kalecki Model of Business Cycle as a Two-Dimensional Dynamical System,” J. Nonlinear Math. Phys.

[CrossRef]8 , pp. 266–271.

Kalmár-Nagy, T., Stépán, G., and Moon, F. C., 2001, “Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations,” Nonlinear Dyn.

[CrossRef], 26 , pp. 121–142.

Epstein, I. R., 1992, “Delay Effects and Differential Delay Equations in Chemical Kinetics,” Int. Rev. Phys. Chem., 11 (1), pp. 135–160.

Roussel, M. R., 1998, “Approximate State-Space Manifolds Which Attract Solutions of Systems of Delay-Differential Equations,” J. Chem. Phys.

[CrossRef], 109 (19), pp. 8154–8160.

Bellman, R., and Cooke, K. L., 1963, "*Differential Equations*", Academic, New York.

Driver, R. D., 1977, "*Ordinary and Delay Differential Equations*", Springer-Verlag, New York.

Hale, J. K., and Lunel, S. V., 1993, "*Introduction to Functional Differential Equations*", Springer-Verlag, New York.

Gopalsamy, K., 1992, "*Stability and Oscillations in Delay Differential Equations of Population Dynamics*", Kluwer Academic Publishers, Dordrecht.

Stépán, G., 1989, "*Retarded Dynamical Systems*", Longman Group, UK.

Bhatt, S. J., and Hsu, C. S., 1966, “Stability Criteria for Second-Order Dynamical Systems with Time Lag,” ASME J. Appl. Mech., 33 (1), pp. 113–118.

Bhatt, S. J., and Hsu, C. S., 1966, “Stability Charts for Second-Order Dynamical Systems with Time Lag,” ASME J. Appl. Mech., 33 (1), pp. 119–124.

Hassard, B. D., 1997, “Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems,” J. Diff. Eqns.

[CrossRef], 136 , pp. 222–235.

Diekmann, O., Gils, S. V., Lunel, S. V., and Walther, H., 1995, "*Delay Equations: Functional-, Complex-, and Nonlinear Analysis*", Springer-Verlag, New York.

Breda, D., Maset, S. and Vermiglio, R., 2004, “Computing the Characteristic Roots for Delay Differential Equations,” IMA J. Numer. Anal., 24 , pp. 1–19.

Engelborghs, K., and Roose, D., 2002, “On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 40 (2), pp. 629–650.

Sandquist, G. M., and Rogers, V. C., 1979, “Graphical Solutions for the Characteristic Roots of the First Order Linear Differential-Difference Equation,” ASME J. Dyn. Syst., Meas., Control, 101 , pp. 37–43.

Pontryagin, L. S., 1955, “On the Zeros of Some Elementary Transcendental Functions,” Am. Math. Soc. Transl. II, 1 , pp. 95–110.

Minorsky, N., 1942, “Self-Excited Oscillations in Dynamical Systems Possessing Retarded Actions,” ASME J. Appl. Mech., 9 , pp. A65–A71.

Lam, J., 1993, “Model Reduction of Delay Systems Using Padé Approximants,” Int. J. Control, 57 (2), pp. 377–391.

Wang, Z., and Hu, H., 1999, “Robust Stability Test for Dynamic Systems with Short Delays by Using Padé Approximation,” Nonlinear Dyn.

[CrossRef]18 , pp. 275–287.

Wahi, P., and Chatterjee, A., 2005, “Galerkin Projections for Delay Differential Equations,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 127 (1), pp. 80–87.