Knowles, J. K., and Sternberg, E., 1972, “On a Class of Conservation Laws in Linearized and Finite Elastostatics,” Arch. Ration. Mech. Anal., 44 (2), pp. 187–211.

Budiansky, B., and Rice, J. R., 1973, “Conservation Laws and Energy-Release Rates,” ASME J. Appl. Mech., 40 (1), pp. 201–203.

Chang, J. H., and Chien, A. J., 2002, “Evaluation of M-Integral for Anisotropic Elastic Media With Multiple Defects,” Int. J. Fract., 114 (3), pp. 267–289.

Kanninen, M. F., and Popelar, C. H., 1985, "*Advanced Fracture Mechanics*", Oxford University Press, New York.

Yau, J. F., Wang, S. S., and Corten, H. T., 1980, “A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity,” ASME J. Appl. Mech., 47 (2), pp. 335–341.

Wang, S. S., Corten, H. T., and Yau, J. F., 1980, “Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids Using Conservation Laws of Elasticity,” Int. J. Fract., 16 (3), pp. 247–259.

Yau, J. F., 1979, “Mixed-Mode Fracture Analysis Using a Conservation Integral,” PhD thesis, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign.

Dolbow, J., and Gosz, M., 2002, “On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials,” Int. J. Solids Struct., 39 (9), pp. 2557–2574.

Rao, B. N., and Rahman, S., 2003, “Mesh-Free Analysis of Cracks in Isotropic Functionally Graded Materials,” Eng. Fract. Mech., 70 (1), pp. 1–27.

Kim, J.-H., and Paulino, G. H., 2003, “An Accurate Scheme for Mixed-Mode Fracture Analysis of Functionally Graded Materials Using the Interaction Integral and Micromechanics Models,” Int. J. Numer. Methods Eng., 58 (10), pp. 1457–1497.

Kim, J.-H., and Paulino, G. H., 2003, “T-Stress, Mixed-Mode Stress Intensity Factors, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method,” Comput. Methods Appl. Mech. Eng., 192 (11–12), pp. 1463–1494.

Kim, J.-H., and Paulino, G. H., 2004, “T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms,” Int. J. Fract., 126 (4), pp. 345–389.

Eischen, J. W., 1987, “Fracture of Non-Homogeneous Materials,” Int. J. Fract., 34 (1), pp. 3–22.

Gu, P., Dao, M., and Asaro, R. J., 1997, “A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral,” ASME J. Appl. Mech., 34 (1), pp. 1–17.

Anlas, G., Santare, M. H., and Lambros, J., 2000, “Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials,” Int. J. Fract., 104 (2), pp. 131–143.

Marur, P. R., and Tippur, H. V., 2000, “Numerical Analysis of Crack-Tip Fields in Functionally Graded Materials With a Crack Normal to the Elastic Gradient,” Int. J. Solids Struct., 37 (38), pp. 5353–5370.

Bao, G., and Cai, H., 1997, “Delamination Cracking in Functionally Graded Coating/Metal Substrate Systems,” Acta Mech., 45 (3), pp. 1055–1066.

Bao, G., and Wang, L., 1995, “Multiple Cracking in Functionally Graded Ceramic/Metal Coatings,” Int. J. Solids Struct., 32 (19), pp. 2853–2871.

Kim, J.-H., and Paulino, G. H., 2002, “Finite Element Evaluation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials,” Int. J. Numer. Methods Eng., 53 (8), pp. 1903–1935.

Kim, J.-H., and Paulino, G. H., 2002, “Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method,” Eng. Fract. Mech., 69 (14–16), pp. 1557–1586.

Kim, J.-H., and Paulino, G. H., 2003, “Mixed-Mode J-Integral Formulation and Implementation Using Graded Finite Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials,” Mech. Mater., 35 (1–2), pp. 107–128.

Williams, M. L., 1957, “On the Stress Distribution at the Base of a Stationary Crack,” ASME J. Appl. Mech., 24 (1), pp. 109–114.

Becker, T. L., Cannon, R. M., and Ritchie, R. O., 2001, “Finite Crack Kinking and T-Stresses in Functionally Graded Materials,” Int. J. Solids Struct., 38 (32–33), pp. 5545–5563.

Erdogan, F., 1995, “Fracture Mechanics of Functionally Graded Materials,” Composites Eng., 5 (7), pp. 753–770.

Noda, N., 1999, “Thermal Stresses in Functionally Graded Materials,” J. Therm. Stresses, 22 (4–5), pp. 477–512.

Paulino, G. H., Jin, Z. H., and Dodds, R. H., 2003, “Failure of Functionally Graded Materials.” "*Comprehensive Structural Integrity*", B.Karihaloo and W.G.Knauss, eds., Elsevier Science, New York, Vol. 2 , Chap. 13, pp. 607–644.

Delale, F., and Erdogan, F., 1983, “The Crack Problem for a Nonhomogeneous Plane,” ASME J. Appl. Mech., 50 (3), pp. 609–614.

Erdogan, F, and Wu, B. H., 1997, “The Surface Crack Problem for a Plate With Functionally Graded Properties,” ASME J. Appl. Mech., 64 (3), pp. 449–456.

Chan, Y.-S., Paulino, G. H., and Fannjiang, A. C., 2001, “The Crack Problem for Nonhomogeneous Materials Under Antiplane Shear Loading—A Displacement Based Formulation,” Int. J. Solids Struct., 38 (17), pp. 2989–3005.

Delale, F., and Erdogan, F., 1988, “On the Mechanical Modeling of an Interfacial Region in Bonded Half-Planes,” ASME J. Appl. Mech., 55 (2), pp. 317–324.

Gu, P., and Asaro, R. J., 1997, “Cracks in Functionally Graded Materials,” Int. J. Solids Struct., 34 (1), pp. 1–17.

Shbeeb, N. I., Binienda, W. K., and Kreider, K. L., 1999, “Analysis of the Driving Forces for Multiple Cracks in an Infinite Nonhomogeneous Plate, Part I: Theoretical Analysis,” ASME J. Appl. Mech., 66 (2), pp. 492–500.

Shbeeb, N. I., Binienda, W. K., and Kreider, K. L., 1999, “Analysis of the Driving Forces for Multiple Cracks in an Infinite Nonhomogeneous Plate, Part II: Numerical Solutions,” ASME J. Appl. Mech., 66 (2), pp. 501–506.

Honein, T., and Herrmann, G., 1997, “Conservation Laws in Nonhomogeneous Plane Elastostatics,” J. Mech. Phys. Solids, 45 (5), pp. 789–805.

Ozturk, M., and Erdogan, F., 1997, “Mode I Crack Problem in an Inhomogeneous Orthotropic Medium,” Int. J. Eng. Sci., 35 (9), pp. 869–883.

Ozturk, M., and Erdogan, F., 1999, “The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium,” Int. J. Fract., 98 (3–4), pp. 243–261.

Sih, G. C., Paris, P. C., and Irwin, G. R., 1965, “On Cracks in Rectilinearly Anisotropic Bodies,” Int. J. Fract. Mech., 1 (2), pp. 189–203.

Eftis, J., Subramonian, N., and Liebowitz, H., 1977, “Crack Border Atress and Displacement Equations Revisited,” Eng. Fract. Mech., 9 (1), pp. 189–210.

Ting, C. T. C., 1996, "*Anisotropic Elasticity: Theory and Applications*". Oxford University Press, Oxford.

Lekhnitskii, S. G., 1968, "*Anisotropic Plates*", Gordon and Breach Science, New York.

Michell, J. H., 1900, “Elementary Distributions of Plane Stress,” Proc. London Math. Soc., 32 , pp. 35–61.

Rice, J. R., 1968, “A Path-Independent Integral and the Approximate Analysis of Strain Concentration By Notches and Cracks,” ASME J. Appl. Mech., 35 (2), pp. 379–386.

Kim, J.-H., 2003, “Mixed-Mode Crack Propagation in Functionally Graded Materials,” PhD thesis, University of Illinois at Urbana-Champaign.

Paulino, G. H., and Kim, J.-H., 2004, “A New Approach to Compute T-Stress in Functionally Graded Materials Using the Interaction Integral Method,” Eng. Fract. Mech., 71 (13–14), pp. 1907–1950.

Kim, J.-H., and Paulino, G. H., 2002, “Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials,” ASME J. Appl. Mech., 69 (4), pp. 502–514.

Santare, M. H., and Lambros, J., 2000, “Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials,” ASME J. Appl. Mech., 67 (4), pp. 819–822.

Konda, N., and Erdogan, F., 1994, “The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium,” Eng. Fract. Mech., 47 (4), pp. 533–545.

Paulino, G. H., and Dong, Z. (unpublished).

Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J., 2001, "*Concepts and Applications of Finite Element Analysis*", 4th ed., Wiley, New York.

Wawrzynek, P. A., 1987, “Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach,” MS thesis, Cornell University.

Wawrzynek, P. A., and Ingraffea, A. R., 1991, “Discrete Modeling of Crack Propagation: Theoretical Aspects and Implementation Issues in Two and Three Dimensions,” Report 91-5, School of Civil Engineering and Environmental Engineering, Cornell University.