Rice, J. R., 1971, “Inelastic Constitutive Relations for Solids: An Integral Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19 , pp. 433–455.

Rice, J. R., 1975, “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,” "*Constitutive Equations in Plasticity*", A.S.Argon, ed., MIT Press, Cambridge, MA, pp. 23–79.

Onsager, L., 1931, “Reciprocal Relations in Irreversible Processes, I, II,” Phys. Rev.

[CrossRef], 37 , pp. 405–406;Onsager, L., 1931, “Reciprocal Relations in Irreversible Processes, I, II,” Phys. Rev.

[CrossRef], 38 , pp. 2265–2279.

Rice, J. R., 1978, “Thermodynamics of Quasi-Static Growth of Griffith Cracks,” J. Mech. Phys. Solids, 26 , pp. 61–78.

De Groot, S. R., Mazur, P., 1962, "*Non-equilibrium Thermodynamics*", North-Holland, Amsterdam.

Ziegler, H., 1977, "*An Introduction to Thermomechanics*", North-Holland, Amsterdam.

Edelen, D. G. B., 1972, “A Nonlinear Onsager Theory of Irreversibility,” Int. J. Eng. Sci., 10 , pp. 481–490.

Edelen, D. G. B., 1973, “Asymptotic Stability, Onsager Fluxes and Reaction Kinetics,” Int. J. Eng., 11 , pp. 819–839.

Ziegler, H., Wehrli, C., 1987, “On a Principle of Maximal Rate of Entropy Production,” J. Non-Equil. Thermodyn., 12 , pp. 229–243.

Rajagopal, K. R., Srinivasa, A. R., 1998, “Mechanics of the Inelastic Behavior of Materials. II. Inelastic Response,” Int. J. Plast., 14 , pp. 969–995.

Rajagopal, K. R., Srinivasa, A. R., 2000, “A Thermodynamic Framework for Rate-Type Fluid Models,” J. Non-Newtonian Fluid Mech., 88 , pp. 207–227.

Rajagopal, K. R., and Srinivasa, A. R., 2004, “On Thermomechanical Restrictions of Continua,” Proc. R. Soc. London, Ser. A, 460 , pp. 631–651.

Puzrin, A. M., Houlsby, G. T., 2003, “Rate-Dependent Hyperplasticity With Internal Functions,” J. Eng. Mech., 129 , pp. 252–263.

Krajcinovic, D., 2000, “Damage Mechanics: Accomplishments, Trends and Needs,” Int. J. Solids Struct., 37 , pp. 267–277.

Lemaitre, J., Desmorat, R., Sauzay, M., 2000, “Anisotropic Damage Law of Evolution,” Eur. J. Mech. A/Solids, 19 , pp. 187–208.

Maugin, G. A., 1999, "*The Thermodynamics of Nonlinear Irreversible Behaviors*", World Scientific, Singapore.

Valanis, K. C., 1971, “A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory,” Arch. Mech., 23 , pp. 517–533.

Valanis, K. C., 1975, “On the Foundations of the Endochronic Theory of Viscoplasticity,” Arch. Mech., 27 , pp. 857–868.

Delph, T. J., 1999, “A Simple Model for Crack Growth in Creep Resistant Alloys,” Int. J. Fract., 98 , pp. 77–86.

Ritchie, R. O., Gilbert, C. J., McNaney, J. M., 2000, “Mechanics and Mechanisms of Fatigue Damage and Crack Growth in Advanced Materials,” Int. J. Solids Struct., 37 , pp. 311–329.

Broek, D., 1987, "*Elementary Engineering Fracture Mechanics*", Martinus Nijhoff, Dordrecht, The Netherlands.

Yang, Q., Tham, L. G., Swoboda, G., 2002, “Micromechanical Basis of Nonlinear Phenomenological Equations as Damage Evolution Laws,” Mech. Res. Commun., 29 , pp. 131–136.

Yang, Q., Tham, L. G., Swoboda, G., 2004, “Relationship Between Refined Griffith Criterion and Power Laws for Cracking,” Mech. Res. Commun., 31 , pp. 429–434.

Chow, C. L., Lu, T. J., 1989, “On Evolution Laws of Anisotropic Damage,” Eng. Fract. Mech., 34 , pp. 679–701.

Soh, C. K., Liu, Y., Yang, Y., Dong, Y., 2003, “A Displacement Equivalence-Based Damage Model for Brittle Materials—Part I: Theory,” ASME J. Appl. Mech., 70 , pp. 681–687.

Swoboda, G., Yang, Q., 1999, “An Energy-Based Damage Model of Geomaterials-II. Deduction of Damage Evolution Laws,” Int. J. Solids Struct., 36 , pp. 1735–1755.

Yang, Q., Zhou, W. Y., Swoboda, G., 1999, “Micromechanical Identification of Anisotropic Damage Evolution Laws,” Int. J. Fract., 68 , pp. 740–750.