0
Article

Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect

[+] Author and Article Information
Hicham Mir, Mario Fafard, Benoı⁁t Bissonnette, Marie-Laure Dano

Department of Civil Engineering, Université Laval, Québec City, Quebec G1K 7P4, Canada

J. Appl. Mech 72(2), 249-258 (Mar 15, 2005) (10 pages) doi:10.1115/1.1839593 History: Received October 30, 2003; Revised August 12, 2004; Online March 15, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pensée,  V., and Kondo,  D., 2001, “Une Analyse Micromécanique 3-D de l’Endommagement par Mésofissuration,” C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron., 329, pp. 271–276.
Lu,  T. J., and Chow,  C. L., 1990, “On Constitutive Equations of Inelastic Solids with Anisotropic Damage,” Theor. Appl. Fract. Mech., 14, pp. 187–218.
Lemaı⁁tre,  J., Desmorat,  R., and Sauzay,  M., 1999, “Loi d’Évolution de l’Endommagement Anisotrope,” C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron., 327, pp. 1231–1236.
Halm, D., 1997, “Contribution à la Modélisation du Comportement Unilatéral et du Frottement Dans les Matériaux Mésofissurés,” PhD thesis, Ècole Nationale Supérieure de Mécanique et d’Aérotechnique et Faculté des Sciences Fondamentales et Appliquées, France.
Kachanov,  M., 1992, “Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts,” ASME Appl. Mech. Rev., 45, (8), pp. 304–335.
Dano,  M. L., Gendron,  G., and Mir,  H., 2002, “Mechanics of Damage and Degradation in Random Short Glass Fiber Reinforced Composites,” Journal of Thermoplastic Composite Materials, 15, (2), pp. 169–177.
Maillette, F., 2002, “Caractérisation Expérimentale d’un Matériau Composite à Fibres Courtes et Orientés Aléatoirement,” Master’s thesis, Dept of Civil Eng., Laval University, Quebec, Canada.
Dano, M.-L., Maillette, F., Gendron, G., and Bissonnette, B., 2001, “Damage Modelling of Random Short Glass Fibre Reinforced Composites,” Proceeding of the Third Canadian Conference on Composites, Montreal, Canada, pp. 263–270.
Mir, H., 2003, “Contribution à la Modélisation de l’Endommagement des Matériaux Composites avec Fibres de Verre Courtes: Anisotropie Induite, Effets Unilatéral et Résiduel,” PhD thesis, Department of Civil Engineering, Laval University, Quebec, Canada.
Sidoroff, F., 1981, “Description of Anisotropic Damage Application to Elasticity,” IUTAM Colloquium, Physical Nonlinearities in Structural Analysis, J. Hult, ed., pp. 237–244.
Chen,  X. F., and Chow,  C. L., 1995, “On Damage Strain Energy Release Rate Y,” Int. J. Damage Mech., 4, pp. 251–263.
Ciarlet, P. G., 1982, Introduction à l’Analyse Numérique Matricielle et à l’Optimization, Masson, Paris.

Figures

Grahic Jump Location
Tensile testing on rectangular plates and specimens cut from it along specific directions
Grahic Jump Location
Cyclic tensile stress–strain curves (Test 8)
Grahic Jump Location
Predicted cyclic tensile stress–strain curves (Model)
Grahic Jump Location
Comparison of the predicted cyclic tensile stress–strain curves with corresponding experimental data
Grahic Jump Location
Tensile stress–strain curves
Grahic Jump Location
Comparison of predicted shear stress–strain curves with the corresponding experimental data
Grahic Jump Location
Comparison of cyclic shear stress–strain curves with the corresponding experimental data
Grahic Jump Location
(a) Comparison of predicted Young’s modulus evolution vs stress with the corresponding experimental data (θ=0 deg). (b) Comparison of predicted Young’s modulus evolution vs stress with the corresponding experimental data (θ=45 deg). (c) Comparison of predicted Young’s modulus evolution vs stress with the corresponding experimental data (θ=90 deg).
Grahic Jump Location
(a) Comparison of predicted Poisson ratio evolution vs stress with the corresponding experimental data (θ=0 deg). (b) Comparison of predicted Poisson’s ratio evolution vs stress with the corresponding experimental data (θ=45 deg). (c) Comparison of predicted Poisson’s ratio evolution vs stress with the corresponding experimental data (θ=90 deg).
Grahic Jump Location
Comparison of predicted Shear modulus evolution vs stress with the corresponding experimental data
Grahic Jump Location
Stress–strain curve in tensile–compressive load (Model)
Grahic Jump Location
Tensile–compressive load simulation: (a) Incremental axial stress level and (b) predicted damage variables evolution (Model)

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In