0
TECHNICAL PAPERS

Thermoelastic Fields in Boundary Layers of Isotropic Laminates

[+] Author and Article Information
Christian Mittelstedt

Siegen University, Department of Mechanical Engineering, Paul-Bonatz-Strasse 9-11, D-57068 Siegen, Germanye-mail: christian.mittelstedt@uni-siegen.de

Wilfried Becker

Darmstadt University of Technology, Department of Mechanics, Hochschulstrasse 1, D-64289 Darmstadt, Germany

J. Appl. Mech 72(1), 86-101 (Feb 01, 2005) (16 pages) doi:10.1115/1.1827247 History: Received November 02, 2003; Revised June 17, 2004; Online February 01, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tsai, S. W., and Hahn, H. T., 1980, Introduction to Composite Materials, Technomic Publishing, Lancaster.
Pipes,  R. B., and Pagano,  N. J., 1970, “Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension,” J. Compos. Mater., 4, pp. 538–548.
Altus,  E., Rotem,  A., and Shmueli,  M., 1980, “Free Edge Effect in Angle Ply Laminates: A New Three Dimensional Finite Difference Solution,” J. Compos. Mater., 14, pp. 21–30.
Wang,  A. S. D., and Crossman,  F. W., 1977, “Some New Results on Edge Effect in Symmetric Composite Laminates,” J. Compos. Mater., 11, pp. 92–106.
Raju,  I. S., and Crews,  J. H., 1981, “Interlaminar Stress Singularities at a Straight Free Edge in Composite Laminates,” Comput. Struct., 14, pp. 21–28.
Whitcomb,  J. D., Raju,  I. S., and Goree,  J. G., 1982, “Reliability of the Finite Element Method for Calculating Free Edge Stresses in Composite Laminates,” Comput. Struct., 15, pp. 23–37.
Wu,  C. M. L., 1992, “Elasto-Plastic Analysis of Edge Effects in Metal Matrix Angle-Ply Laminates,” Comput. Struct., 45, pp. 273–280.
Spilker,  R. L., and Chou,  S. C., 1980, “Edge Effects in Symmetric Composite Laminates: Importance of Satisfying the Traction Free Edge Condition,” J. Compos. Mater., 14, pp. 2–20.
Wang,  S. S., and Yuan,  F. G., 1983, “A Singular Hybrid Finite Element Analysis of Boundary-Layer Stresses in Composite Laminates,” Int. J. Solids Struct., 19, pp. 825–837.
Robbins,  D. H., and Reddy,  J. N., 1996, “Variable Kinematic Modelling of Laminated Composite Plates,” Int. J. Numer. Methods Eng., 39, pp. 2283–2317.
Gaudenzi,  P., Mannini,  A., and Carbonaro,  R., 1998, “Multi-Layer Higher-Order Finite Elements for the Analysis of Free-Edge Stresses in Composite Laminates,” Int. J. Numer. Methods Eng., 41, pp. 851–873.
Mannini,  A., and Gaudenzi,  P., 2003, “Multi-Layer Higher-Order Finite Elements for the Analysis of Free-Edge Stresses in Piezoelectric Actuated Laminates,” Compos. Struct., 61, pp. 271–278.
Davi,  G., 1996, “Stress Fields in General Composite Laminates,” AIAA J., 34, pp. 2604–2608.
Lindemann,  J., and Becker,  W., 2000, “Analysis of the Free-Edge Effect in Composite Laminates by the Boundary Finite Element Method,” Mech. Compos. Mater., 36, pp. 355–366.
Hayashi,  T., 1967, “Analytical Study of Interlaminar Shear Stresses in a Laminated Composite Plate,” Trans. Jpn. Soc. Aeronaut. Eng. Space Sci.,10, pp. 43–48.
Puppo,  A. H., and Evensen,  H. A., 1970, “Interlaminar Shear in Laminated Composites Under Generalized Plane Stress,” J. Compos. Mater., 4, pp. 204–220.
Pagano,  N. J., 1974, “On the Calculation of Interlaminar Normal Stress in Composite Laminate,” J. Compos. Mater., 8, pp. 65–81.
Pipes,  R. B., and Pagano,  N. J., 1974, “Interlaminar Stresses in Composite Laminates: An Approximate Elasticity Solution,” J. Appl. Mech., 41, pp. 668–672.
Tang,  S., 1975, “A Boundary Layer Theory. Part I: Laminated Composites in Plane Stress,” J. Compos. Mater., 9, pp. 33–41.
Tang,  S., and Levy,  A., 1975, “A Boundary Layer Theory. Part II: Extension of Laminated Finite Strip,” J. Compos. Mater., 9, pp. 42–52.
Hsu,  P. W., and Herakovich,  C. T., 1977, “Edge Effects in Angle-Ply Composite Laminates,” J. Compos. Mater., 11, pp. 422–428.
Pagano,  N. J., 1978, “Stress Fields in Composite Laminates,” Int. J. Solids Struct., 14, pp. 385–400.
Pagano,  N. J., 1978, “Free Edge Stress Fields in Composite Laminates,” Int. J. Solids Struct., 14, pp. 401–406.
Kassapoglou,  C., and Lagace,  P. A., 1986, “An Efficient Method for the Calculation of Interlaminar Stresses in Composite Materials,” J. Appl. Mech., 53, pp. 744–750.
Krishna Murty,  A. V., and Hari Kumar,  H. K., 1989, “Modelling of Symmetric Laminates Under Extension,” Compos. Struct., 11, pp. 15–32.
Rose,  C. A., and Herakovich,  C. T., 1993, “An Approximate Solution for Interlaminar Stresses in Composite Laminates,” Composites Eng., 3, pp. 271–285.
Yin,  W.-L., 1994, “Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting, Part I: A Stress-Function-Based Variational Approach,” J. Appl. Mech., 61, pp. 410–415.
Becker,  W., 1993, “Closed-Form Solution for the Free-Edge Effect in Cross-Ply Laminates,” Compos. Struct., 26, pp. 39–45.
Becker,  W., 1994, “Closed-Form Analysis of the Free Edge Effect in Angle-Ply Laminates,” J. Appl. Mech., 61, pp. 209–211.
Zhu,  C., and Lam,  Y. C., 1998, “A Rayleigh-Ritz Solution for Local Stresses in Composite Laminates,” Compos. Sci. Technol., 58, pp. 447–461.
Tahani,  M., and Nosier,  A., 2003, “Free Edge Stress Analysis of General Cross-Ply Composite Laminates Under Extension and Thermal Loading,” Compos. Struct., 60, pp. 91–103.
Ting,  T. C. T., and Chou,  S. C., 1981, “Edge Singularities in Anisotropic Composites,” Int. J. Solids Struct., 17, pp. 1057–1068.
Wang,  S. S., and Choi,  I., 1982, “Boundary-Layer Effects in Composite Laminates, Part 1: Free-Edge Stress Singularities,” J. Appl. Mech., 49, pp. 541–548.
Wang,  S. S., and Choi,  I., 1982, “Boundary-Layer Effects in Composite Laminates, Part 2: Free-Edge Stress Solutions and Basic Characteristics,” J. Appl. Mech., 49, pp. 549–560.
Zwiers,  R. I., Ting,  T. C. T., and Spilker,  R. L., 1982, “On the Logarithmic Singularity of Free-Edge Stress in Laminated Composites Under Uniform Extension,” J. Appl. Mech., 49, pp. 561–569.
Delale,  F., 1984, “Stress Singularities in Bonded Anisotropic Materials,” Int. J. Solids Struct., 20, pp. 31–40.
Bar-Yoseph,  P., and Avrashi,  J., 1988, “On the Nature of the Free Edge Stress Singularity in Composite Laminated Plates,” Int. J. Numer. Methods Eng., 26, pp. 1507–1523.
Ding,  S., and Kumosa,  M., 1994, “Singular Stress Behavior at an Adhesive Interface Corner,” Eng. Fract. Mech., 47, pp. 503–519.
Gu,  L., and Belytschko,  T., 1994, “A Numerical Study of Stress Singularities in a Two-Material Wedge,” Int. J. Solids Struct., 31, pp. 865–889.
Kim,  T. W., and Im,  S., 1995, “Boundary Layers in Wedges of Laminated Composite Strips Under Generalized Plane Deformation. Part I: Asymptotic Solutions,” Int. J. Solids Struct., 32, pp. 609–628.
Chaudhuri,  R. A., and Xie,  M., 1998, “Free-Edge Stress Singularity in a Bimaterial Laminate,” Compos. Struct., 40, pp. 29–136.
Chue,  C.-H., and Liu,  C.-I., 2002, “Disappearance of Free-Edge Stress Singularity in Composite Laminates,” Compos. Struct., 56, pp. 111–129.
Pipes,  R. B., and Daniel,  I. M., 1971, “Moire Analysis of the Interlaminar Shear Edge Effect in Laminated Composites,” J. Compos. Mater., 5, pp. 255–259.
Whitney,  J. M., and Browning,  C. E., 1972, “Free-Edge Delamination of Tensile Coupons,” J. Compos. Mater., 6, pp. 300–303.
Herakovich,  C. T., Post,  D., Buczek,  M. B., and Czarnek,  R., 1985, “Free Edge Strain Concentrations in Real Composite Laminates: Experimental-Theoretical Correlation,” J. Appl. Mech., 52, pp. 787–793.
Herakovich, C. T., 1989, “Free Edge Effects in Laminated Composites,” Handbook of Composites, Vol. 2. Structure and Design, edited by C. T. Herakovich and Y. M. Tarnopol’skii, Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 187–230.
Herakovich,  C. T., 1989, “Failure Modes and Damage Accumulation in Laminated Composites With Free Edges,” Compos. Sci. Technol., 36, pp. 105–119.
Kant,  T., and Swaminathan,  K., 2000, “Estimation of Transverse/Interlaminar Stresses in Laminated Composites: A Selective Review and Survey of Current Developments,” Compos. Struct., 49, pp. 65–75.
Mittelstedt,  C., and Becker,  W., 2004, “Interlaminar Stress Concentrations in Layered Structures. Part I: A Selective Literature Survey on the Free-Edge Effect Since 1967,” J. Compos. Mater., 38, pp. 1037–1062.
Becker,  W., Jin,  P. P., and Neuser,  P., 1999, “Interlaminar Stresses at the Free Corners of a Laminate,” Compos. Struct., 45, pp. 155–162.
Dimitrov,  A., Andrae,  H., and Schnack,  E., 2001, “Efficient Computation of Order and Mode of Corner Singularities in 3D Elasticity,” Int. J. Numer. Methods Eng., 51, pp. 1–24.
Dimitrov,  A., Andrae,  H., and Schnack,  E., 2002, “Singularities Near Three-Dimensional Corners in Composite Laminates,” Int. J. Fract., 115, pp. 361–375.
Labossiere,  P. E. W., and Dunn,  M. L., 2001, “Fracture Initiation at Three-Dimensional Bimaterial Interface Corners,” J. Mech. Phys. Solids, 49, pp. 609–634.
Mittelstedt,  C., and Becker,  W., 2003, “Free-Corner Effects in Cross-Ply Laminates: An Approximate Higher-Order Theory Solution,” J. Compos. Mater., 37, pp. 2043–2068.
Mittelstedt,  C., and Becker,  W., 2003, “Three-Dimensional Closed-Form Analysis of the Stress Field at Rectangular Corners of Layered Plates,” Arch. Appl. Mech., 73, pp. 63–74.
Mittelstedt,  C., and Becker,  W., 2004, “Interlaminar Stress Concentrations in Layered Structures. Part II: Closed-Form Analysis of Stresses at Laminated Rectangular Wedges With Arbitrary Non-Orthotropic Layup,” J. Compos. Mater., 38, pp. 1063–1090.
Noor,  A. K., and Burton,  W. S., 1989, “Assessment of Shear Deformation Theories for Multilayered Composite Plates,” Appl. Mech. Rev., 42, pp. 1–13.
Noor,  A. K., and Burton,  W. S., 1990, “Assessment of Computational Models for Multilayered Anisotropic Plates,” Compos. Struct., 14, pp. 233–265.
Reddy,  J. N., 1990, “A Review of Refined Theories of Laminated Composite Plates,” Shock Vib. Dig., 22, pp. 3–17.
Reddy,  J. N., 1990, “On Refined Theories of Composite Laminates,” Meccanica, 25, pp. 230–238.
Altenbach,  H., 1998, “Theories for Laminated and Sandwich Plates, A Review,” Mech. Compos. Mater., 34, pp. 243–252.
Whitney,  J. M., 1969, “The Effect of Transverse Shear Deformation on the Bending of Laminated Plates,” J. Compos. Mater., 3, pp. 534–547.
Mau,  S. T., 1973, “A Refined Laminated Plate Theory,” J. Appl. Mech., 40, pp. 606–607.
Srinivas,  S., 1973, “A Refined Analysis of Composite Laminates,” J. Sound Vib., 30, pp. 495–507.
Sun,  C. T., and Whitney,  J. M., 1973, “Theories for the Dynamic Response of Laminated Plates,” AIAA J., 11, pp. 178–183.
Reddy,  J. N., 1987, “A Generalization of Two-Dimensional Theories of Laminated Composite Plates,” Commun. Appl. Numer. Methods, 3, pp. 173–180.
Di Sciuva,  M., 1986, “Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model,” J. Sound Vib., 105, pp. 425–442.
Murakami,  H., 1986, “Laminated Composite Plate Theory With Improved In-Plane Responses,” J. Appl. Mech., 53, pp. 661–666.
Reddy,  J. N., and Savoia,  M., 1992, “Layer-Wise Shell Theory for Postbuckling of Laminated Circular Cylindrical Shells,” AIAA J., 30, pp. 2148–2154.
Nosier,  A., Kapania,  R. K., and Reddy,  J. N., 1993, “Free Vibration Analysis of Laminated Plates Using a Layerwise Theory,” AIAA J., 31, pp. 2335–2346.
Wisniewski,  K., and Schrefler,  B. A., 1993, “Hierarchical Multi-Layered Element of Assembled Timoshenko Beams,” Compos. Struct., 48, pp. 255–261.
Reddy,  J. N., and Starnes,  J. H., 1993, “General Buckling of Stiffened Circular Cylindrical Shells According to a Layerwise Theory,” Compos. Struct., 49, pp. 605–616.
Cho,  M., and Parmerter,  R. R., 1993, “An Efficient Higher Order Plate Theory for Laminated Composites,” Compos. Struct., 20, pp. 113–123.
Cho,  M., and Parmerter,  R. R., 1993, “Efficient Higher Order Composite Plate Theory for General Lamination Configurations,” AIAA J., 31, pp. 1299–1306.
He,  L. H., 1994, “A Linear Theory of Laminated Shells Accounting for Continuity of Displacements and Transverse Shear Stresses at Layer Interfaces,” Int. J. Solids Struct., 31, pp. 613–627.
Liu,  P., Zhang,  Y., and Zhang,  X., 1994, “Improved High-Order Thermoelastic Response Theory for Analyzing Thermal Bending of Laminated Composite Plates,” J. Therm. Stresses, 17, pp. 163–190.
Chattopadhyay,  A., and Gu,  H., 1995, “Modeling of Delamination Buckling in Composite Cylindrical Shells With a New Higher-Order Theory,” Compos. Sci. Technol., 54, pp. 223–232.
Kam,  T. Y., and Jan,  T. B., 1995, “First-Ply Failure Analysis of Laminated Composite Plates Based on the Layerwise Linear Displacement Theory,” Compos. Struct., 32, pp. 583–591.
Di,  S., and Rothert,  H., 1995, “A Solution of Laminated Cylindrical Shells Using an Unconstrained Third-Order Theory,” Compos. Struct., 32, pp. 667–680.
Khatri,  K. N., and Asnani,  N. T., 1995, “Vibration and Damping Analysis of Multilayered Shells,” Compos. Struct., 33, pp. 143–157.
Ossadzow,  C., Muller,  P., and Touratier,  M., 1995, “A General Doubly Curved Laminate Shell Theory,” Compos. Struct., 32, pp. 299–312.
He,  J. F., and Zhang,  Z. Z., 1996, “Bending Analysis of Antisymmetric Angle-Ply Laminated Plates Including Transverse Shear Effects,” Compos. Struct., 34, pp. 437–444.
Kassegne,  S. K., and Reddy,  J. N., 1998, “Local Behavior of Discretely Stiffened Composite Plates and Cylindrical Shells,” Compos. Struct., 41, pp. 13–26.
Ali,  J. S. M., Bhaskar,  K., and Varadan,  T. K., 1999, “A New Theory for Accurate Thermal/Mechanical Flexural Analysis of Symmetric Laminated Plates,” Compos. Struct., 45, pp. 227–232.
Cho,  Y. B., and Averill,  R. C., 2000, “First-Order Zig–Zag Sublaminate Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels,” Compos. Struct., 50, pp. 1–15.

Figures

Grahic Jump Location
Exemplary layered plate, discretization scheme, nomenclature
Grahic Jump Location
Corner coordinate system x̄1,x̄2,x̄3
Grahic Jump Location
Convergence study, σ33 through the thickness −d/2≤x̄3≤d/2 at the corner tip x̄1=0,x̄2=0 for m=3 (upper left portion), m=6 (upper right portion), m=9 (lower left portion), m=12 (lower right portion), x̄3 in mm, all stresses in MPa
Grahic Jump Location
Convergence study, σ11 through the thickness −d/2≤x̄3≤d/2 at the plate center point x̄1=l1,x̄2=l2 (upper left portion), σ33 at x̄2=0,x̄3=d/4 in the range 0≤x̄1≤l1/2 (upper right portion), σ33 at x̄2=l2,x̄3=d/4 in the range 0≤x̄1≤l1/2 (lower left portion), σ13 at x̄2=0,x̄3=d/4 in the range 0≤x̄1≤l1/2 (lower right portion), x̄1 and x̄3 in mm, all stresses in MPa
Grahic Jump Location
(a) σ11 at x̄3=0 in the range 0≤x̄1≤l1,0≤x̄2≤l2, (b) σ13 at x̄3=3/16d in the range 0≤x̄1≤l1,0≤x̄2≤l2, and x̄1 and x̄2 in mm, all stresses in MPa
Grahic Jump Location
(a)–(i) σ33 at several locations x̄3 in the range 0≤x̄1≤l1,0≤x̄2≤l2, (a) σ33 at x̄3=0, (b) σ33 at x̄3=d/16, (c) σ33 at x̄3=d/8, (d) σ33 at x̄3=3d/16, (e) σ33 at x̄3=d/4, (f) σ33 at x̄3=5d/16, (g) σ33 at x̄3=3d/8, (h) σ33 at x̄3=7d/16, (i) σ33 at x̄3=d/2,x̄1 and x̄2 in mm, all stresses in MPa
Grahic Jump Location
Interlaminar normal stress σ33 through the thickness 0≤x̄3≤d/2 at the corner tip x̄1=0,x̄2=0,x̄3 in mm, all stresses in MPa
Grahic Jump Location
Comparison of the present method with the results of Becker et al., σ13 and σ33 at x̄2=0,x̄3=d/5 in the range 0≤x̄1≤l1,x̄1 in mm, all stresses in MPa

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In