Taya, M., and Arsenault, R. J., 1989, *Metal Matrix Composites, Thermomechanical Behavior*, Pergamon Press, New York.

Cox,
H. L., 1952, “The Elasticity and Strength of Paper and Other Fibrous Materials,” British J. Appl. Phys.,3, pp. 72–79.

Christensen,
R. M., and Waals,
F. M., 1972, “Effective Stiffness of Randomly Oriented Fiber Composites,” J. Compos. Mater., 6, pp. 518–532.

Christensen,
R. M., 1976, “Asymptotic Modulus Results for Composites Containing Randomly Oriented Fibers,” Int. J. Solids Struct., 12, pp. 537–544.

Chou,
T. W., and Nomura,
S., 1981, “Fiber Orientation Effects on the Thermoelastic Properties of Short-Fiber Composites,” Fibre Sci. Technol., 14, pp. 279–291.

Takao,
Y., Chou,
T. W., and Taya,
M., 1982, “Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites,” ASME J. Appl. Mech., 49, pp. 536–540.

Tandon,
G. P., and Weng,
G. J., 1986, “Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites,” Compos. Sci. Technol., 27, pp. 111–132.

Benveniste,
Y., 1987, “A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials,” Mech. Mater., 6, pp. 147–157.

Ferrari,
M., and Johnson,
G. C., 1989, “Effective Elasticities of Short-Fiber Composites With Arbitrary Orientation Distribution,” Mech. Mater., 8, pp. 67–73.

Haddad,
Y. M., 1992, “On the Deformation Theory of a Class of Randomly Structured Composite Systems,” ASME J. Energy Resour. Technol., 114, pp. 110–116.

Chen,
T., Dvorak,
G. J., and Benveniste,
Y., 1992, “Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials,” ASME J. Appl. Mech., 59, pp. 539–546.

Banerjee,
P. K., and Henry,
D. P., 1992, “Elastic Analysis of Three-Dimensional Solids With Fiber Inclusions by BEM,” Int. J. Solids Struct., 29, pp. 2423–2440.

Sayers,
C. M., 1992, “Elastic Anisotropy of Short-Fiber Reinforced Composites,” Int. J. Solids Struct., 29, pp. 2933–2944.

Papathanasiou,
T. D., Ingber,
M. S., Mondy,
L. A., and Graham,
A. L., 1994, “The Effective Elastic Modulus of Fiber-Reinforced Composites,” J. Compos. Mater., 28, pp. 288–304.

Ponte Castaneda,
P., and Willis,
J. R., 1995, “The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media,” J. Mech. Phys. Solids, 43, pp. 1919–1951.

Dunn,
M. L., Ledbetter,
H., Heyliger,
P. R., and Choi,
C. S., 1996, “Elastic Constants of Textured Short-Fiber Composites,” J. Mech. Phys. Solids, 44, pp. 1509–1541.

Luo,
J., and Stevens,
R., 1996, “Micromechanics of Randomly Oriented Ellipsoidal Inclusion Composites, Part I: Stress, Strain and Thermal Expansion,” J. Appl. Phys., 79, pp. 9047–9056.

Luo,
J., and Stevens,
R., 1996, “Micromechanics of Randomly Oriented Ellipsoidal Inclusion Composites, Part II: Elastic Moduli,” J. Appl. Phys., 79, pp. 9057–9063.

Riccardi,
A., and Montheillet,
F., 1999, “A Generalized Self-Consistent Method for Solids Containing Randomly Oriented Spheroidal Inclusions,” Acta Mech., 133, pp. 39–56.

Huang,
J. H., 2001, “Some Closed-Form Solutions for Effective Moduli of Composites Containing Randomly Oriented Short Fibers,” Mater. Sci. Eng., A, A315, pp. 11–20.

Mori,
T., and Tanaka,
K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions,” Acta Metall., 21, pp. 571–574.

Qiu,
Y. P., and Weng,
G. J., 1991, “The Influence of Inclusion Shape on the Overall Elastoplastic Behavior of a Two-Phase Isotropic Composite,” Int. J. Solids Struct., 27, pp. 1537–1550.

Qiu,
Y. P., and Weng,
G. J., 1993, “Plastic Potential and Yield Function of Porous Materials With Aligned and Randomly Oriented Spheroidal Voids,” Int. J. Plast., 9, pp. 271–290.

Tandon,
G. P., and Weng,
G. J., 1988, “A Theory of Particle-Reinforced Plasticity,” ASME J. Appl. Mech., 55, pp. 126–135.

Qiu,
Y. P., and Weng,
G. J., 1992, “A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites,” ASME J. Appl. Mech., 59, pp. 261–268.

Li,
G., Ponte Castaneda,
P., and Douglas,
A. S., 1993, “Constitutive Models for Ductile Solids Reinforced by Rigid Spheroidal Inclusions,” Mech. Mater., 15, pp. 279–300.

Ponte Castaneda,
P., 1991, “The Effective Mechanical Properties of Nonlinear Isotropic Composites,” J. Mech. Phys. Solids, 39, pp. 45–71.

Ponte Castaneda,
P., 1992, “New Variational Principles in Plasticity and Their Application to Composite Materials,” J. Mech. Phys. Solids, 40, pp. 1757–1788.

Dunn,
M. L., and Ledbetter,
H., 1997, “Elastic-Plastic Behavior of Textured Short-Fiber Composites,” Acta Mater., 45, pp. 3327–3340.

Bao,
G., Hutchinson,
J. W., and McMeeking,
R. M., 1991, “Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep,” Acta Metall. Mater., 39, pp. 1871–1882.

Sorensen,
N. J., Suresh,
S., Tvergaard,
V., and Needleman,
A., 1995, “Effects of Reinforcement Orientation on the Tensile Response of Metal-Matrix Composites,” Mater. Sci. Eng., A, 197, pp. 1–10.

Dong,
M., Schmauder,
S., Bidlingmaier,
T., and Wanner,
A., 1997, “Prediction of the Mechanical Behavior of Short Fiber Reinforced MMCs by Combined Cell Models,” Comput. Mater. Sci., 9, pp. 121–133.

Hashin,
Z., and Shtrikman,
S., 1963, “A Variational Approach to the Theory of the Elastic Behavior Multiphase Materials,” J. Mech. Phys. Solids, 11, pp. 127–140.

Ju,
J. W., and Sun,
L. Z., 2001, “Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part I: Micromechanics-Based Formulation,” Int. J. Solids Struct., 38, pp. 183–201.

Sun,
L. Z., and Ju,
J. W., 2001, “Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part II: Applications,” Int. J. Solids Struct., 38, pp. 203–225.

Ju,
J. W., and Chen,
T. M., 1994, “Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities,” Acta Mech., 103, pp. 103–121.

Ju,
J. W., and Sun,
L. Z., 1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME J. Appl. Mech., 66, pp. 570–574.

Mura, T., 1987, *Micromechanics of Defects in Solids*, Second Edition, Martinus Nijhoff, The Netherlands.

Hill,
R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids, 11, pp. 357–372.

Walpole,
L. J., 1966, “On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I,” J. Mech. Phys. Solids, 14, pp. 151–162.

Walpole,
L. J., 1966, “On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—II,” J. Mech. Phys. Solids, 14, pp. 289–301.

Christensen, R. M., 1991, *Mechanics of Composite Materials*, Krieger Publishing, Melbourne, Florida.

Wu,
T. T., 1966, “The Effect of Inclusion Shape on the Elastic Moduli of a Two-Phase Material,” Int. J. Solids Struct., 2, pp. 1–8.

Willis,
J. R., 1977, “Bounds and Self-Consistent Estimates for the Overall Moduli of Anisotropic Composites,” J. Mech. Phys. Solids, 25, pp. 185–202.

Yang,
J., Pickard,
S. M., Cady,
C., Evans,
A. G., and Mehrabian,
R., 1991, “The Stress/Strain Behavior of Aluminum Matrix Composites With Discontinuous Reinforcements,” Acta Metall. Mater., 39, pp. 1863–1869.

Li,
G., and Ponte Castaneda,
P., 1994, “Variational Estimates for the Elastoplastic Response of Particle-Reinforced Metal-Matrix Composites,” Appl. Mech. Rev., 47, pp. S77–S94.

Dvorak,
G. J., Bahei-El-Din,
Y. A., Macheret,
Y., and Liu,
C. H., 1988, “An Experimental Study of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum Composite,” J. Mech. Phys. Solids, 36, pp. 655–687.

Dvorak, G. J., and Bahei-El-Din, A., 1997, “Inelastic Composite Materials: Tranformation Analysis and Experiments,” *Continuum Micromechanics*, P. Suquet, ed., CISM Courses and Lectures No. 377, Springer-Verlag, Berlin, pp. 1–59.

Sun, L. Z., 1998, “Micromechanics and Overall Elastoplasticity of Discontinuously Reinforced Metal Matrix Composites,” Ph.D. thesis, University of California—Los Angeles.