A Basic Power Decomposition in Lagrangian Mechanics

[+] Author and Article Information
J. Casey

Departments of Mechanical Engineering and Bioengineering, University of California, 6125 Etcheverry Hall, Berkeley, CA 94720-1740. e-mail: jcasey@me.berkeley.edu.

J. Appl. Mech 71(5), 735-738 (Nov 09, 2004) (4 pages) doi:10.1115/1.1778413 History: Received March 25, 2003; Revised February 06, 2004; Online November 09, 2004

First Page Preview

View Large
First page PDF preview
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Whittaker, E. T., 1944, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Second Ed., Cambridge University Press, Cambridge, UK.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, Heinemann, London.
Goldstein, H., 1980, Classical Mechanics, Second Ed., Addison-Wesley, Reading, MA.
Greenwood, D. T., 1977, Classical Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
Rosenberg, R. M., 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York.
Papastavridis, J. G., 2002, Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians, Oxford University Press, Oxford, UK.
Hertz, H., 1900, The Principles of Mechanics Presented in a New Form, Macmillan, New York (Dover Publications, 1956).
Synge,  J. L., 1927, “On the Geometry of Dynamics,” Philos. Trans. R. Soc. London, Ser. A, 226, pp. 31–106.
Synge, J. L., 1936, Tensorial Methods in Dynamics (University of Toronto Studies, Applied Mathematics Series No. 2), University of Toronto Press, Toronto, Canada.
Synge, J. L., and Schild, A., 1949, Tensor Calculus, University of Toronto Press, Toronto, Canada (Dover, 1978).
Brillouin, L., 1964, Tensors in Mechanics and Elasticity, Academic Press, San Diego, CA.
Papastavridis, J. G., 1999, Tensor Calculus and Analytical Dynamics, CRC Press, Boca Raton, FL.
Casey,  J., 1994, “Geometrical Derivation of Lagrange’s Equations,” Am. J. Phys., 62, pp. 836–847.
Casey,  J., 1995, “On the Advantages of a Geometrical Viewpoint in the Derivation of Lagrange’s Equations for a Rigid Continuum,” Z. Angew. Math. Phys., 46 (Special Issue), pp. S805–S847.
Casey, J., and O’Reilly, O. M., 2004, “Geometrical Derivation of Lagrange’s Equations for a System of Rigid Bodies,” Math. Mech. Solids, in press.
Casey,  J., 2004, “Pseudo-Rigid Continua: Basic Theory and a Geometrical Derivation of Lagrange’s Equations,” Proc. R. Soc., London, Ser. A, 460, pp. 2021–2049.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd Ed., Springer-Verlag, New York.
Abraham, R., and Marsden, J. E., 1978, Foundations of Mechanics, 2nd Ed., Addison-Wesley, Reading, MA.
Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
Marsden, J. E., 1992, Lectures in Mechanics (London Mathematical Society Lecture Note Series, 174), Cambridge University Press, Cambridge, UK.
Marsden, J. E., and Ratiu, T. S., 1999, Introduction to Mechanics and Symmetry, 2nd Ed., Springer-Verlag, New York.
Hirsch,  M. W., 1984, “The Dynamical Systems Approach to Differential Equations,” Bull. Am. Math. Soc., 11, pp. 1–64.
Smale, S., 1980, The Mathematics of Time, Springer-Verlag, New York.
Painlevé, P., 1895, Leçons sur l’Intégration des Equations Différentielles de la Mécanique et Applications, A. Hermann, Paris.
Painlevé, P., 1930, Cours de Mécanique, I , Gauthier-Villars et Cie., Paris.
Appell, P., 1911, Traité de Mécanique Rationnelle, 2 , Gauthier-Villars, Paris.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In