Volumetric Constraint Models for Anisotropic Elastic Solids

[+] Author and Article Information
Carlos A. Felippa

Department of Aerospace Engineering Sciences and Center for Aerospace Structures, University of Colorado, Boulder, CO 80309-0429

Eugenio Oñate

International Center for Numerical Methods in Engineering (CIMNE), Edificio C-1, c. Gran Capitán s/n, Universidad Politécnica de Cataluña, Campus Norte UPC, 08034 Barcelona, Spain

J. Appl. Mech 71(5), 731-734 (Nov 09, 2004) (4 pages) doi:10.1115/1.1748318 History: Received August 09, 2002; Revised February 15, 2004; Online November 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Truesdell, C. A., and Toupin, R., 1960, “The Classical Field Theories,” Handbook der Physik, S. Flugge, ed., III/1 , Springer-Verlag, Berlin.
Courant, R., and Hilbert, D., 1952, Methods of Mathematical Physics, I , Interscience, New York.
Felippa,  C. A., and Oñate,  E., 2003, “Stress, Strain and Energy Splittings for Anisotropic Elastic Solids Under Volumetric Constraints,” Comput. Struct., 81, pp. 1343–1357.
Truesdell, C. A., and Noll, W., 1965, “The Nonlinear Field Theories of Mechanics,” Handbook der Physik, S. Flugge, ed., III/3 , Springer-Verlag, Berlin.


Grahic Jump Location
Stability chart for the principal minor (12) of an iso choric material as function of the ratios C11/C22 and C11/C33
Grahic Jump Location
Schematic of inclusions between rigidtropic, isochoric and hydroisochoric models. The crosshatched area marks a singular C matrix.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In