Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies

[+] Author and Article Information
P. Sharma

Department of Mechanical Engineering, University of Houston, Houston, TX 77204e-mail: psharma@uh.edu

S. Ganti

General Electric Global Research Center, Niskayuna, NY 12309

J. Appl. Mech 71(5), 663-671 (Nov 09, 2004) (9 pages) doi:10.1115/1.1781177 History: Received November 25, 2003; Revised February 13, 2004; Online November 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Eshelby,  J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London, Ser. A, A241, pp. 376–396.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, Netherlands.
Eshelby,  J. D., 1959, “The Elastic Field Outside an Ellipsoidal Inclusion,” Proc. R. Soc. London, Ser. A, A252, pp. 561–569.
Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics 2, I. N. Sneddon and R. Hill, eds., North Holland, Amsterdam, pp. 89–140.
Ru,  C. Q., 2003, “Eshelby Inclusion of Arbitrary Shape in an Anisotropic Plane or Half-Plane,” Acta Mech., 160(3–4), pp. 219–234.
Li,  J. Y., and Dunn,  M. L., 1998, “Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems,” Philos. Mag. A, 77(5), pp. 1341–1350.
Pan,  E., and Yang,  B., 2001, “Elastostatic Fields in an Anisotropic Substrate due to a Buried Quantum Dot,” J. Appl. Phys., 90(12), pp. 6190–6196.
Faux,  D. A., and Pearson,  G. S., 2000, “Green’s Tensors for Anisotropic Elasticity: Application to Quantum Dots,” Phys. Rev. B, 62(8), pp. R4798–R4801.
Chiu,  Y. P., 1977, “On the Stress Field due to Initial Strains in Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44, pp. 587–590.
Rodin,  G. J., 1996, “Eshelby’s Inclusion Problem for Polygons and Polyhedra,” J. Mech. Phys. Solids, 44(12), p. 1977.
Nozaki,  H., and Taya,  M., 2001, “Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and Related Problems,” ASME J. Appl. Mech., 68, 441.
Furuhashi,  R., Huang,  J. H., and Mura,  T., 1992, “Sliding Inclusions and Inhomogeneities With Frictional Interfaces,” ASME J. Appl. Mech., 59, pp. 783–788.
Ru,  C. Q., and Schiavone,  P., 1997, “A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear,” Proc. R. Soc. London, Ser. A, A453, pp. 2551–2572.
Zhong,  Z., and Meguid,  S. A., 1996, “On the Eigenstrain Problem of a Spherical Inclusion With an Imperfectly Bonded Interface,” ASME J. Appl. Mech., 63, pp. 877–883.
Qu,  J., 1993, “Effects of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials,” Mech. Mater., 14, pp. 269–281.
Qu,  J., 1993, “Eshelby Tensor for an Elastic Inclusion With Slightly Weakened Interface,” ASME J. Appl. Mech., 60, pp. 1048–1050.
Kouris,  D. A., Tsuchida,  E., and Mura,  T., 1986, “An Anomaly of Sliding Inclusions,” ASME J. Appl. Mech., 53, pp. 724–726.
Walpole,  L. J., 1978, “Coated Inclusion in an Elastic Medium,” Proc. Cambridge Philos. Soc., 83, pp. 495–506.
Luo,  H. A., and Weng,  G. J., 1989, “On Eshelby’s S-Tensor in Three Phase Cylindrically Concentric Solid,” Mech. Mater., 8(2–3), pp. 77–88.
Cherkaoui,  M., Sabar,  H., and Berveiller,  M., 1994, “Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Problems,” J. Eng. Mater. Technol., 116(3), pp. 274–278.
Taya,  M., 1999, “Micromechanics Modeling of Smart Composites,” Composites, 30A(4), pp. 531–536.
Ru,  C. Q., 2000, “Eshelby’s Problem for Two-Dimensional Piezoelectric Inclusions of Arbitrary Shape,” Proc. R. Soc. London, Ser. A, 456(1997), pp. 1051–1068.
Deng,  W., and Meguid,  S. A., 1999, “Closed Form Solutions for Partially Debonded Circular Inclusion in Piezoelectric Materials,” Acta Mech., 137(3–4), pp. 167–181.
Mikata,  Y., 2001, “Explicit Determination of Piezoelectric Eshelby Tensors for a Spheroidal Inclusion,” Int. J. Solids Struct., 38(40–41), pp. 7045–7063.
Pan,  E., 2002, “Elastic and Piezoelectric Fields Around a Quantum Dot: Fully Coupled or Semicoupled Model?” J. Appl. Phys., 91(6), pp. 3785–3796.
Pan,  E., 2002, “Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials,” Z. Angew. Math. Phys., 53(5), pp. 815–838.
Sendeckyi, G. P., 1967, “Ellipsoidal Inhomogeneity Problem,” Ph.D. dissertation, Northwestern University, Evanston, IL.
Moschovidis, Z. A., 1975, “Two Ellipsoidal Inhomogeneities and Related Problems Treated by the Equivalent Inclusion Method,” Ph.D thesis, Northwestern University, Evanston, IL.
Asaro,  R. J., and Barnett,  D. M., 1975, “The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion,” J. Mech. Phys. Solids, 23, pp. 77–83.
Mura,  T., and Kinoshita,  N., 1978, “The Polynomial Eigenstrain Problem or an Anisotropic Ellipsoidal Inclusion,” Phys. Status Solidi A, 48, pp. 447–450.
Rahman,  M., 2002, “The Isotropic Ellipsoidal Inclusion With a Polynomial Distribution of Eigenstrain,” ASME J. Appl. Mech., 69, pp. 593–601.
Eringen, A. C., 1999, Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
Cheng,  Z. Q., and He,  L. H., 1995, “Micropolar Elastic Fields due to a Spherical Inclusion,” Int. J. Eng. Sci., 33(3), pp. 389–397.
Cheng,  Z. Q., and He,  L. H., 1997, “Micropolar Elastic Fields due to a Circular Cylindrical Inclusion,” Int. J. Eng. Sci., 35(7), pp. 659–686.
Sharma,  P., and Dasgupta,  A., 2002, “Average Elastic Fields and Scale-Dependent Overall Properties of Heterogeneous Micropolar Materials Containing Spherical and Cylindrical Inhomogeneities,” Phys. Rev. B, 66, p. 224110.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier, New York.
Markov, K., and Preziosi, L., 2000, Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhauser Verlag, Switzerland.
Weng, G. J., Taya, M., and Abe, H., eds, 1990, Micromechanics and Inhomogeneity: The Toshio Mura Anniversary Volume, Springer-Verlag, New York.
Bilby, B. A., Miller, K. J., and Willis, J. R., 1984, IUTAM/IFC/ICM Symposium on Fundamentals of Deformation and Fracture, Sheffield, England, Apr. 2–5, Eshelby Memorial Symposium, Cambridge University Press, Cambridge, UK.
Mura,  T., Shodja,  H. M., and Hirose,  Y., 1996, “Inclusion problems,” Appl. Mech. Rev., 49(10), Part 2, pp. S118–S127.
Ibach,  H., 1997, “The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures,” Surf. Sci. Rep., 29(5–6), pp. 193–263.
Miller,  R. E., and Shenoy,  V. B., 2000, “Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology, 11(3), pp. 139–147.
Gurtin,  M. E., and Murdoch  A. I., 1978, “Surface Stress in Solids,” Int. J. Solids Struct., 14(6), pp. 431–440.
Gurtin,  M. E., Weissmuller,  J., and Larche,  F., 1998, “The General Theory of Curved Deformable Interfaces in Solids at Equilibrium,” Philos. Mag. A, 78, p. 1093.
Gurtin,  M. E., and Murdoch,  A. I., 1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal., 59, p. 389.
Cahn,  J. W., and Larche,  F., 1982, “Surface Stress and the Chemical Equilibrium of Small Crystals. II. Solid Particles Embedded in a Solid Matrix,” Acta Metall., 30(1), pp. 51–56.
Bimberg, D., Grundmann, M., and Lendenstov, N. N., 1996, Quantum Dot Heterostructures, John Wiley and Sons, New York.
Freund,  L. B., and Johnson,  H. T., 2001, “Influence of Strain on Functional Characteristics of Nanoelectronic Devices,” J. Mech. Phys. Solids, 49, pp. 1925–1935.
Johnson,  H. T., and Freund,  L. B., 2001, “The Influence of Strain on Confined Electronic States in Semiconductor Quantum Structures,” Int. J. Solids Struct., 38, pp. 1045–1062.
Singh, J., 1992, Physics of Semiconductors & Their Heterostructures, McGraw-Hill, New York.
Brus,  L. E., 1984, “Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size-Dependence of the Lowest Excited Electronic State,” J. Chem. Phys., 80(9), p. 4403.
LeBoeuf, S., 2003, private communication.
Mohammad,  S. N., and Morkoc,  H., 1996, “Progress and Prospects of Group-III Nitride Semiconductors,” Prog. Quantum Electron., 20, p. 361.
Shur,  M. S., and Khan,  M. A., 1997, “GaN/AlGaN Heterostructure Devices: Photodetectors and Field-Effect Transistors,” Mater. Res. Bull., 22(2), p. 44.
Chin,  V. W. L., Tansley,  T. L., and Osotchan,  T., 1994, “Electron Mobilities in Gallium, Indium, and Aluminum nitrides,” J. Appl. Phys., 75, p. 7365.
Tiersten,  H. F., 1969, “Elastic Surface Waves Guided by Thin Films,” J. Appl. Phys., 40, p. 770.


Grahic Jump Location
Schematic of the problem
Grahic Jump Location
Stress concentration as a function of surface properties and void radius. (a) Solution with surface modulus=2Ks, Al [1 0 0]. (b) Solution with surface modulus=nominalKs for Al [1 0 0]. (c) Classical solution without surface effects, i.e., Ks=0. (d) Solution with surface modulus=2Ks Al [1 1 1]. (e) Solution with surface modulus=nominalKs, Al [1 1 1].
Grahic Jump Location
Size-dependent effective hydrostatic modulus with surface effects versus void radius normalized with the matrix bulk modulus: (a) solution with surface modulus=2Ks, Al [1 0 0]; (b) solution with surface modulus=nominalKs for Al [1 0 0]; (c) classical solution without surface effects, i.e., Ks=0; (d) solution with surface modulus=2Ks Al [1 1 1]; (e) solution with surface modulus=nominalKs, Al [1 1 1]
Grahic Jump Location
Size-dependent wavelength shift due to surface elasticity effects




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In