Mechanical Systems With Nonideal Constraints: Explicit Equations Without the Use of Generalized Inverses

[+] Author and Article Information
Firdaus E. Udwadia

Aerospace and Mechanical Engineering, Mathematics, and Information and Operations Management, University of Southern California, Los Angeles, CA 90089 e-mail: fudwadia@usc.edu

Robert E. Kalaba

Electrical Engineering, and Economics, University of Southern California, Los Angeles, CA 90089

Phailaung Phohomsiri

Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089

J. Appl. Mech 71(5), 615-621 (Nov 09, 2004) (7 pages) doi:10.1115/1.1767844 History: Received January 14, 2003; Revised March 08, 2004; Online November 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Appell,  P., 1899, “Sur une Forme Generale des Equations de la Dynamique,” C. R. Acad. Sci., Paris,129, pp. 459–460.
Beghin, H., 1967, Mecanique Theorique et Appliquee, Gauthier-Villars, Paris.
Chetaev, N. G., 1989, Theoretical Mechanics, Mir Publisher, Moscow.
Dirac, P. A. M., 1964, Lectures in Quantum Mechanics, Yeshiva University, New York.
Gauss,  C. F., 1829, “Uber Ein Neues Allgemeines Grundgsetz der Mechanik,” J. Reine Angew. Math., 4, pp. 232–235.
Gibbs,  J. W., 1879, “On the Fundamental Formulas of Dynamics,” Am. J. Math., 2, pp. 49–64.
Hamel, P. G., 1949, Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik, Springer-Verlag, Berlin.
Lagrange, J. L., 1787, Mechanique Analytique, Mme Ve Courcier, Paris.
Udwadia,  F. E., and Kalaba,  R. E., 1992, “A New Perspective on Constrained Motion,” Proc. R. Soc. London, Ser. A, 439, pp. 407–410.
Pars, L. A., 1979, A Treatise on Analytical Dynamics, Oxbow Press, Woodridge, CT, p. 14.
Udwadia,  F. E., and Kalaba,  R. E., 2001, “Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints,” ASME J. Appl. Mech., 68, pp. 462–467.
Udwadia,  F. E., and Kalaba,  R. E., 2002, “On the Foundations of Analytical Dynamics,” Int. J. Non-Linear Mech., 37, pp. 1079–1090.
Udwadia, F. E., and Kalaba, R. E., 1996, Analytical Dynamics: A New Approach, Cambridge University Press, Cambridge, UK.
Udwadia,  F. E., Kalaba,  R. E., and Hee-Chang,  E., 1997, “Equation of Motion for Constrained Mechanical Systems and The Extended D’Alembert’s Principle,” Q. Appl. Math., LV(2), pp. 321–331.
Udwadia,  F. E., 2000, “Fundamental Principles of Lagrangian Dynamics: Mechanical Systems With Non-Ideal, Holonomic, and Non-Holonomic Constraints,” J. Math. Anal. Appl., 252, pp. 341–355.
Udwadia,  F. E., and Kalaba,  R. E., 2002, “What is the General Form of the Explicit Equations of Motion for Constrained Mechanical Systems?” ASME J. Appl. Mech., 69, pp. 335–339.
Synge,  J. L., 1927, “On the Geometry of Dynamics,” Philos. Trans. R. Soc. London, Ser. A, 226, pp. 31–106.
Bowden, F. P., and Tabor, D., 1974, Friction: An Introduction to Tribology, Heinemann, London.
Moore,  E. H., 1920, “On the Reciprocal of The General Algebraic Matrix,” Bull. Am. Math. Soc., 26, pp. 394–395.
Penrose,  R., 1955, “A Generalized Inverse of Matrices,” Proc. Cambridge Philos. Soc., 51, pp. 406–413.


Grahic Jump Location
A bead of mass, m, moving on a circular ring of radius, R
Grahic Jump Location
A block sliding under gravity on an inclined plane (0<α<π/2) that is vibrating vertically with amplitude β and frequency ω. The coefficient of Coulomb friction between the plane and the block is μ.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In