Rayleigh Waves in Anisotropic Crystals Rotating About the Normal to a Symmetry Plane

[+] Author and Article Information
M. Destrade

Laboratoire de Modélisation en Mécanique, UMR 7607, CNRS, Université Pierre et Marie Curie, 4 place Jussieu, Tour 66, case 162, 75252 Paris Cedex 05, Francee-mail: destrade@lmm.jussieu.fr

J. Appl. Mech 71(4), 516-520 (Sep 07, 2004) (5 pages) doi:10.1115/1.1756140 History: Received January 22, 2003; Revised September 29, 2003; Online September 07, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Reindl,  L., Scholl,  G., Ostertag,  T., Scherr,  H., Wolff,  U., and Schmidt,  F., 1998, “Theory and Application of Passive SWA Radio Transponders as Sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 45, pp. 1281–1292.
Pohl,  A., Ostermayer,  G., Reindl,  L., and Seifert,  F., 1997, “Monitoring the Tire Pressure at Cars Using Passive SWA Sensors,” IEEE Ultrasonics Symposium,1, pp. 471–474.
Pohl,  A., Steindl,  R., and Reindl,  L., 1999, “The ‘Intelligent Tire’ Utilizing Passive SWA Sensors—Measurement of Tire Friction,” IEEE Trans. Instrum. Meas., 48, pp. 1041–1046.
Clarke,  N. S., and Burdess,  J. S., 1994, “A Rotation Rate Sensor Based Upon a Rayleigh Resonator,” ASME J. Appl. Mech., 61, pp. 139–143.
Clarke,  N. S., and Burdess,  J. S., 1994, “Rayleigh Waves on a Rotating Surface,” ASME J. Appl. Mech., 61, pp. 724–726.
Fang,  H., Yang,  J., and Jiang,  Q., 2000, “Rotation Perturbed Surface Acoustic Waves Propagating in Piezoelectric Crystals,” Int. J. Solids Struct., 37, pp. 4933–4947.
Grigor’evskiĭ,  V. I., Gulyaev,  Yu. V., and Kozlov,  A. I., 2000, “Acoustic Waves in a Rotating Elastic Medium,” Acoust. Phys., 46, pp. 236–238.
Collet, B., 2003, “Gyroscopic Effect on Surface Acoustic Waves in Anisotropic Solid Media,” Proceedings of the 5th World Congress on Ultrasonics, pp. 991–995.
Jose,  K. A., Suh,  W. D., Xavier,  P. B., Varadan,  V. K., and Varadan,  V. V., 2002, “Surface Acoustic Wave MEMS Gyroscope,” Wave Motion, 36, pp. 367–381.
Jahangir,  E., and Howe,  R. M., 1993, “Time-Optimal Attitude Control Scheme for a Spinning Missile,” J. Guid. Control Dyn., 16, pp. 346–353.
Schoenberg,  M., and Censor,  D., 1973, “Elastic Waves in Rotating Media,” Q. Appl. Math., 31, pp. 115–125.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York.
Chadwick,  P., and Wilson,  N. J., 1992, “The Behavior of Elastic Surface Waves Polarized in a Plane of Material Symmetry, II. Monoclinic Media,” Proc. R. Soc. London, Ser. A, 438, pp. 207–223.
Destrade,  M., 2001, “The Explicit Secular Equation for Surface Acoustic Waves in Monoclinic Elastic Crystals,” J. Acoust. Soc. Am., 109, pp. 1398–1402.
Stroh,  A. N., 1962, “Steady State Problems in Anisotropic Elasticity,” J. Math. Phys., 41, pp. 77–103.
Ingebrigsten,  K. A., and Tonning,  A., 1969, “Elastic Surface Waves in Crystal,” Phys. Rev., 184, pp. 942–951.
Ting,  T. C. T., 2002, “Explicit Secular Equations for Surface Waves in Monoclinic Materials With the Symmetry Plane at x1=0,x2=0 or x3=0,” Proc. R. Soc. London, Ser. A, A458, pp. 1017–1031.
Currie,  P. K., 1979, “The Secular Equation for Rayleigh Waves on Elastic Crystals,” Q. J. Mech. Appl. Math., 32, pp. 163–173.
Taziev,  R. M., 1989, “Dispersion Relation for Acoustic Waves in an Anisotropic Elastic Half-Space,” Sov. Phys. Acoust., 35, pp. 535–538.
Ting,  T. C. T., 2004, “The Polarization Vector and Secular Equation for Surface Waves in an Anisotropic Elastic Half-Space,” Int. J. Solids Struct., 41, pp. 2065–2083.
Destrade,  M., 2004, “Surface Waves in Rotating Rhombic Crystals,” Proc. R. Soc. London, Ser. A, 460, pp. 653–665.
Destrade,  M., 2004, “Explicit Secular Equation for Scholte Waves Over a Monoclinic Crystal,” J. Sound Vib., to appear.
Barnett,  D. M., and Lothe,  J., 1973, “Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function, and Surface Wave (Rayleigh Wave) Solutions in Anisotropic Elastic Solids,” Phys. Norv., 7, pp. 13–19.
Shutilov, V., 1988, Fundamental Physics of Ultrasound, Gordon and Breach, New York.
Destrade,  M., 2003, “Rayleigh Waves in Symmetry Planes of Crystals: Explicit Secular Equations and Some Explicit Wave Speeds,” Mech. Mater., 35, 931–939.
Mozhaev, V. G., 1995, “Some New Ideas in the Theory of Surface Acoustic Waves in Anisotropic Media,” IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solids, D. F. Parker and A. H. England, eds., Kluwer, Dordrecht, The Netherlands, pp. 455–462.
Furs,  A. N., 1997, “Covariant Form of the Dispersion Equation for Surface Acoustic Waves in Symmetry Planes of Crystals,” Crystallogr. Rep., 4, pp. 196–201.


Grahic Jump Location
Monoclinic crystal with symmetry plane at x3=0, cut along x2=0, and rotating about x3 at constant angular velocity Ω
Grahic Jump Location
Rayleigh wave speeds for 12 monoclinic crystals rotating about x3
Grahic Jump Location
Rayleigh wave speeds for 8 rhombic crystals rotating about x3




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In