Collinear and Periodic Electrode-Ceramic Interfacial Cracks in Piezoelectric Bimaterials

[+] Author and Article Information
Christoph Häusler, Cun-Fa Gao, Herbert Balke

Institute of Solid Mechanics, Technische Universität Dresden, 01062 Dresden, Germany

J. Appl. Mech 71(4), 486-492 (Sep 07, 2004) (7 pages) doi:10.1115/1.1767168 History: Received October 17, 2002; Revised January 30, 2004; Online September 07, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Winzer,  S. R., Shankar,  N., and Ritter,  A. P., 1989, “Designing Cofired Multilayer Electrostrictive Actuators for Reliability,” J. Am. Ceram. Soc., 72, pp. 2246–2257.
Yang,  W., and Suo,  Z., 1994, “Cracking in Ceramic Actuators Caused by Electrostriction,” J. Mech. Phys. Solids, 42, pp. 649–663.
Hao,  T. H., Gong,  X., and Suo,  Z., 1996, “Fracture Mechanics for the Design of Ceramic Multilayer Actuators,” J. Mech. Phys. Solids, 44, pp. 23–48.
Shindo,  Y., Narita,  F., and Sosa,  H., 1998, “Electroelastic Analysis of Piezoelectric Ceramics With Surface Electrodes,” Int. J. Eng. Sci., 36, pp. 1001–1009.
Ye,  R. Q., and He,  L. H., 2001, “Electric Field and Stresses Concentrations at the Edge of Parallel Electrodes in Piezoelectric Ceramics,” Int. J. Solids Struct., 38, pp. 6941–6951.
Dos Santos e Lucato,  S. L., Lupascu,  D. C., Kamlah,  M., Rödel,  J., and Lynch,  C. S., 2001, “Constraint-Induced Crack Initiation at Electrode Edges in Piezoelectric Ceramics,” Acta Mater., 49, pp. 2751–2759.
Deng,  D., and Meguid,  S. A., 1998, “Analysis of Conducting Rigid Inclusion at the Interface of Two Dissimilar Piezoelectric Materials,” ASME J. Appl. Mech., 65, pp. 76–84.
Ru,  C. Q., 2000, “Exact Solution for Finite Electrode Layers Embedded at the Interface of Two Piezoelectric Half-Planes,” J. Mech. Phys. Solids, 48, pp. 693–708.
Weitzing, H., 2000, “Phenomena of Damage and Fracture-Mechanical Characterization of Piezoelectric Multilayer Actuators,” dissertation Technische Universität Hamburg-Harburg (in German).
Zickgraf, B., 1995, “Fatigue of Piezoelectric Multilayer Actuators,” dissertation Universität Stuttgart (in German).
Ru,  C. Q., 2000, “Electrode-Ceramic Interfacial Cracks in Piezoelectric Multilayer Materials,” ASME J. Appl. Mech., 67, pp. 255–261.
Wang,  X., and Shen,  Y. P., 2002, “Exact Solution for Mixed Boundary Value Problems at Anisotropic Piezoelectric Bimaterial Interface and Unification of Various Interface Defects,” Int. J. Solids Struct., 39, pp. 1591–1619.
Suo,  Z., Kuo,  C.-M., Barnett,  D. M., and Willis,  J. R., 1992, “Fracture Mechanics for Piezoelectric Ceramics,” J. Mech. Phys. Solids, 40, pp. 739–765.
Ting,  T. C. T., and Wang,  M. Z., 1992, “Generalized Stroh Formalism for Anisotropic Elasticity for General Boundary Conditions,” Acta Mech. Sin., 8, pp. 193–207.
Wang,  M. Z., Ting,  T. C. T., and Yan,  Gongpu, 1993, “The Anisotropic Elastic Semi-Infinite Strip,” Q. Appl. Math., 51, pp. 283–297.
Homulka,  T. A., and Keer,  L. M., 1995, “A Mathematical Solution of a Special Mixed Boundary Value Problem of Anisotropic Elasticity,” Q. J. Mech. Appl. Math., 48, pp. 635–658.
Häusler, C., and Balke, H., 2001, “An Interface Crack Between a Piezoelectric Medium and an Electric Conductor,” Contributions to Modeling and Identification, P. Haupt, T. Kersten, and V. Ulbricht, eds., Gesamthochschule, Kassel, pp. 57–66 (in German).
Parton,  V. Z., 1976, “Fracture Mechanics of Piezoelectric Materials,” Acta Astronaut., 3, pp. 671–683.
Balke, H., Kemmer, G., and Drescher, J., 1997, “Some Remarks on Fracture Mechanics of Piezoelectric Solids,” Proceedings of the International Conference and Exhibition of Micro Materials ’97, B. Michel, and T. Winkler, eds., Berlin, pp. 398–401.
Park,  S., and Sun,  C.-T., 1995, “Fracture Criteria for Piezoelectric Ceramics,” J. Am. Ceram. Soc., 78(6), pp. 1475–1480.
Hao,  T.-H., and Shen,  Z.-Y., 1994, “A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications,” Eng. Fract. Mech., 47(6), pp. 793–802.
Schneider,  G. A., Felten,  F., and McMeeking,  R. M., 2003, “The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture,” Acta Mater., 51, pp. 2235–2241.
Suo,  Z., 1990, “Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media,” Proc. R. Soc. London, Ser. A, A427(1873), pp. 331–358.
Muskhelishvili, N. I., 1975, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Leyden.
Suo,  Z., 1993, “Models for Breakdown-Resistant Dielectric and Ferroelectric Ceramics,” J. Mech. Phys. Solids, 47, pp. 1155–1176.
Boniface,  V., and Banks-Sills,  L., 2002, “Stress Intensity Factors for Finite Interface Cracks Between a Special Pair of Transversely Isotropic Materials,” ASME J. Appl. Mech., 69, pp. 230–239.
Ting,  T. C. T., 1986, “Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites,” Int. J. Solids Struct., 22, pp. 965–983.
Wu,  K. C., 1990, “Stress Intensity Factors and Energy Release Rate for Interfacial Cracks Between Dissimilar Anisotropic Materials,” ASME J. Appl. Mech., 57, pp. 882–886.
Hutchinson,  J.-W., and Suo,  Z., 1992, “Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech., 29, pp. 63–191.
Gao,  C.-F., Häusler,  C., and Balke,  H., 2004, “Periodic Permeable Interface Cracks in Piezoelectric Materials,” Int. J. Solids Struct., 41(2), pp. 323–335.


Grahic Jump Location
Arbitrary collinear electrode-ceramic interfacial cracks
Grahic Jump Location
Collinear periodic electrode-ceramic interfacial cracks




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In