0
TECHNICAL PAPERS

Frictional Collapse of Granular Assemblies

[+] Author and Article Information
Akke S. J. Suiker

Koiter Institute Delft, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

Norman A. Fleck

Cambridge Center for Micromechanics, Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK

J. Appl. Mech 71(3), 350-358 (Jun 22, 2004) (9 pages) doi:10.1115/1.1753266 History: Received October 22, 2002; Revised October 09, 2003; Online June 22, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cundall,  P. A., and Strack,  O. D. L., 1979, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, 1, pp. 47–65.
Thornton,  C., and Barnes,  D. J., 1986, “Computer Simulated Deformation of Compact Granular Assemblies,” Acta Mech., 64, pp. 45–61.
Ting,  J. M., Corkum,  B. T., Kauffmann,  C. R., and Greco,  C., 1989, “Discrete Numerical Model for Soil Mechanics,” J. Geotech. Eng., 115, pp. 379–398.
Bathurst,  R. J., and Rothenburg,  L., 1990, “Observations on Stress-Force Fabric Relationships in Idealized Granular Materials,” Mech. Mater., 9, pp. 65–80.
Bardet,  J. P., and Proubet,  J., 1992, “Shear-Band Analysis in Idealized Granular Material,” J. Eng. Mech., 118, pp. 397–415.
Oda, M., Iwashita, K., and Kazama, H., 1997, “Micro-Structure Developed in Shear Bands of Dense Granular Soils and Its Computer Simulation. Mechanism of Dilatancy and Failure,” IUTAM Symposium on Mechanics of Granular and Porous Materials, N. A. Fleck and A. C. F. Cocks, eds., Kluwer, Dordrecht, The Netherlands, pp. 353–364.
Thomas,  P. A., and Bray,  J. D., 1999, “Capturing Nonspherical Shape of Granular Media With Disk Clusters,” J. Geotech. Geoenvir. Eng., 125, pp. 169–178.
Thornton,  C., 2000, “Numerical Simulations of Deviatoric Shear Deformation of Granular Media,” Geotechnique, 50, pp. 43–53.
Kruyt,  N. P., and Rothenburg,  L., 2002, “Probability Density Functions of Contact Forces for Cohesionless Frictional Granular Materials,” Int. J. Solids Struct., 39, pp. 571–583.
Goldscheider,  M., 1976, “Grenzbedingung und Fliessregel von Sand,” Mech. Res. Commun., 3, pp. 463–468.
Lade,  P. V., and Kim,  M. K., 1988, “Single Hardening Constitutive Model for Frictional Materials: III. Comparison With Experimental Data,” Comput. Geotech.,6, pp. 31–47.
Christofferson,  J., Mehrabadi,  M. M., and Nemat-Nasser,  S., 1981, “A Micromechanical Description of Granular Material Behavior,” ASME J. Appl. Mech., 48, pp. 339–344.
Walton,  K., 1987, “The Effective Elastic Moduli of a Random Packing of Spheres,” J. Mech. Phys. Solids, 35, pp. 213–226.
Jenkins, J. T., 1988, “Volume Change in Small Strain Axisymmetric Deformations of Granular Material,” Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, ed., Elsevier, Amsterdam, pp. 143–152.
Fleck,  N. A., Kuhn,  L. T., and McMeeking,  R. M., 1992, “Yielding of Metal Powder Bonded by Isolated Contacts,” J. Mech. Phys. Solids, 40, pp. 1139–1162.
Storåkers,  B., Fleck,  N. A., and McMeeking,  R. M., 1999, “The Viscoplastic Compaction of Composite Powders,” J. Mech. Phys. Solids, 47, pp. 785–815.
Liao,  C. L., Chan,  T. C., Suiker,  A. S. J., and Chang,  C. S., 2000, “Pressure-Dependent Elastic Moduli of Granular Assemblies,” Int. J. Numer. Analyt. Meth. Geomech., 24, pp. 265–279.
Suiker,  A. S. J., de Borst,  R., and Chang,  C. S., 2001, “Micro-Mechanical Modelling of Granular Material—Part 1: Derivation of a Second-Gradient Micro-Polar Constitutive Theory,” Acta Mech., 149, pp. 161–180.
Suiker,  A. S. J., de Borst,  R., and Chang,  C. S., 2001, “Micro-Mechanical Modelling of Granular Material—Part 2: Plane Wave Propagation in Infinite Media,” Acta Mech., 149, pp. 181–200.
Digby,  P. J., 1981, “The Effective Elastic Moduli of Porous Granular Rock,” ASME J. Appl. Mech., 48, pp. 803–808.
Chang,  C. S., Sundaram,  S. S., and Misra,  A., 1989, “Initial Moduli of Particulated Mass With Frictional Contacts,” Int. J. Numer. Analyt. Meth. Geomech., 13, pp. 629–644.
Liao,  C. L., Chang,  T. P., Young,  D. H., and Chang,  C. S., 1997, “Stress-Strain Relationships for Granular Materials Based on the Hypothesis of Best-Fit,” Int. J. Solids Struct., 34, pp. 4087–4100.
Heyliger,  P. R., and McMeeking,  R. M., 2001, “Cold Plastic Compaction of Powders by a Network Model,” J. Mech. Phys. Solids, 49, pp. 2031–2054.
Redanz,  P., and Fleck,  N. A., 2001, “The Compaction of a Random Distribution of Metal Cylinders by the Discrete Element Method,” Acta Mater., 49, pp. 4325–4335.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, London, UK.
Cundall, P. A., 1988, “Computer Simulations of Dense Sphere Assemblies,” Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, ed., Elsevier, Amsterdam, pp. 113–123.
Bathurst,  R. J., and Rothenburg,  L., 1988, “Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions,” ASME J. Appl. Mech., 55, pp. 17–23.
Torquato, S., 2002, Random Heterogeneous Materials, Microstructure and Macroscopic Properties, Springer-Verlag, New York.
Suiker, A. S. J., 2002, The Mechanical Behavior of Ballasted Railway Tracks, dissertation, Delft University Press, Delft, The Netherlands (pdf-format available at http://www.library.tudelft.nl/dissertations/).
Alexander,  S., 1998, “Amorphous Solids: Their Structure, Lattice Dynamics and Elasticity,” Phys. Rep., 296, pp. 65–236.
Silbert,  L. E., Ertaş,  D., Grest,  G. S., Halsey,  T. C., and Levine,  D., 2002, “Geometry of Frictionless and Frictional Sphere Packings,” Phys. Rev. E, 65(031304), pp. 1–6.
Edwards,  S. F., 1998, “The Equations of Stress in a Granular Material,” Physica A, 249, pp. 226–231.
Ng,  T. T., and Dobry,  R., 1994, “A Non-linear Numerical Model for Soil Mechanics,” J. Geotech. Eng., 120, pp. 388–403.
Lambe, T. W., and Whitman, R. V., 1969, Soil Mechanics, John Wiley and Sons, New York.
Davy, C. A., Fleck, N. A., and Bolton, M. D., 2004, “The Collapse Behavior of a Sugar Aggregate,” submitted, for publication.
Lade,  P. V., and Duncan,  J. M., 1975, “Elastoplastic Stress-Strain Theory for Cohesionless Soil,” J. Geotech. Eng., 101, pp. 1037–1053.
Chen, W. F., and Saleeb, A. F., 1982, Constitutive Equations for Engineering Materials, John Wiley and Sons, New York.

Figures

Grahic Jump Location
Cuboidal volume L×L×L of equi-sized spheres with radius r, subjected to principal stresses Σ12, and Σ3
Grahic Jump Location
Stress-strain response under axisymmetric compression; three confining pressures: Σconf/Gpart=−2.5×10−6,−5.0×10−6 and −7.5×10−6 (contact friction angle ϕc=24 deg). (a) Particle radius r=0.05L. (b) Particle radius r=0.025L.
Grahic Jump Location
Deformation characteristics under axisymmetric compression; three confining pressures: Σconf/Gpart=−2.5×10−6,−5.0×10−6 and −7.5×10−6 (contact friction angle ϕc=24 deg, particle radius r=0.025L)
Grahic Jump Location
Stress-strain response under axisymmetric compression; the contact friction angles are: ϕc=4 deg, 14 deg, 24 deg, and 34 deg. Unconstrained and constrained particle rotation.
Grahic Jump Location
Influence of contact friction angle ϕc on macroscopic internal state variables (for unconstrained and constrained particle rotation). (a) Sliding contact fraction sf at steady-state collapse (Edev=5%). (b) Coordination number n̄ at steady-state collapse. (c) Porosity p at initial state (dashed line) and at steady-state collapse (solid line).
Grahic Jump Location
Deformation characteristics under axisymmetric compression; the contact friction angles are: ϕc=4 deg, 14 deg, 24 deg, and 34 deg
Grahic Jump Location
Contact friction angle ϕc versus macroscopic friction angle ϕ and dilatancy angle ψ at steady-state collapse (Edev=5%)
Grahic Jump Location
Deformation characteristics under axisymmetric compression; the contact friction angles are: ϕc=4 deg, 14 deg, 24 deg, and 34 deg. Constrained particle rotation.
Grahic Jump Location
Contact friction angle ϕc versus macroscopic friction angle ϕ. DEM versus experimental results (triaxial tests on an aggregate of steel spheres).
Grahic Jump Location
Influence of particle rotation and particle rearrangement (ϕc=24 deg) for prescribed deformation paths. (a) Volumetric deformation (Ė11=Ė22=Ė33). (b) Deviatoric deformation (Ė11=−1/2Ė22=−1/2Ė33).
Grahic Jump Location
Collapse contour in deviatoric plane (contact friction angle ϕc=24 deg). (a) DEM with unconstrained and constrained particle rotation. (b) DEM versus Lade-Duncan model, Mohr-Coulomb model and Drucker-Prager model (macroscopic friction angle ϕ=19 deg).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In