Bouc, R., 1967, “Forced Vibration of Mechanical Systems With Hysteresis,” Proceedings of the 4th Conference on Nonlinear Oscillations, Prague, Czechoslovakia, p. 315.
Wen,
Y. K., 1976, “Method for Random Vibration of Hysteretic Systems,” J. Eng. Mech., 102, pp. 249–263.
Baber,
T. T., and Wen,
Y. K., 1981, “Random Vibration of Hysteretic Degrading Systems,” J. Eng. Mech., 107, pp. 1069–1087.
Baber,
T. T., and Noori,
M. N., 1986, “Modeling General Hysteresis Behavior and Random Vibration Application,” ASME J. Vib., Acoust., Stress, Reliab. Des., 108, pp. 411–420.
Foliente,
G. C., 1995, “Hysteretic Modeling of Wood Joints and Structural Systems,” J. Struct. Div. ASCE, 121, pp. 1013–1022.
Loh,
C. H., and Chung,
S. T., 1993, “A Three-Stage Identification Approach for Hysteretic Systems,” Earthquake Eng. Struct. Dyn., 22, pp. 129–150.
Kyprianou,
A., Worden,
K., and Panet,
M., 2001, “Identification of Hysteretic Systems Using the Differential Evolution Algorithm,” J. Sound Vib., 248, pp. 289–314.
Zhang,
H., Foliente,
G. C., Yang,
Y., and Ma,
F., 2002, “Parameter Identification of Inelastic Structures Under Dynamic Loads,” Earthquake Eng. Struct. Dyn., 31, pp. 1113–1130.
Ni,
Y. Q., Ko,
J. M., and Wong,
C. W., 1998, “Identification of Nonlinear Hysteretic Isolators From Periodic Vibration Tests,” J. Sound Vib., 217, pp. 737–756.
Wong,
C. W., Ni,
Y. Q., and Lau,
S. L., 1992, “Steady-State Oscillation of Hysteretic Differential Model II: Performance Analysis,” J. Eng. Mech., 120, pp. 2299–2325.
Wen,
Y. K., 1980, “Equivalent Linearization for Hysteretic Systems Under Random Excitation,” ASME J. Appl. Mech., 47, pp. 150–154.
Roberts, J. B., and Spanos, P. D., 1990, Random Vibration and Statistical Linearization, John Wiley and Sons, New York, pp. 257–284.
Hamby,
D. M., 1994, “A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models,” Environ. Monitor. Assess.,32, pp. 135–154.
Iman,
R. L., and Helton,
J. C., 1991, “The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments,” Risk Anal, 11, pp. 591–606.
Sobol,
I. M., 1993, “Sensitivity Estimates for Nonlinear Mathematical Model,” Mathematical Modeling and Computational Experiment,1, pp. 407–414.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, pp. 237–241.
Sobol,
I. M., 1990, “Quasi-Monte-Carlo Methods,” Prog. Nucl. Energy, 24, pp. 55–61.
Hammersley,
J. M., and Morton,
K. W., 1956, “A New Monte Carlo Technique: Antithetic Variates,” Proc. Cambridge Philos. Soc., 52, pp. 449–475.
McKay,
M. D., Beckman,
R. J., and Conover,
W. J., 1979, “A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,” Technometrics, 21, pp. 239–245.
Homma,
T., and Saltelli,
A., 1996, “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliability Eng. Sys. Safety, 52, pp. 1–17.
Iman,
R. L., and Hora,
S. C., 1990, “A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis,” Risk Anal, 10, pp. 401–406.
Chan, K., Tarantola, S., Saltelli A., and Sobol, I. M., 2000, “Variance-Based Methods,” Sensitivity Analysis, A. Saltelli, K. Chan, and E. M. Scott, eds., John Wiley and Sons, New York, pp. 167–197.
Saltelli,
A., and Bolado,
R., 1998, “An Alternative Way to Compute Fourier Amplitude Sensitivity Test (FAST),” Comput. Stat. Data Anal.,26, pp. 445–460.