Lamé, G., 1852, *Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides*, Gautheir-Villars, Paris.

Kirsch,
G., 1898, “Die Theorie der Elastizitat und die Bedürfnisse der Festigkeitslehre,” Veit. Ver. Deut. Ing., 42, pp. 797–807.

Love, A. E. H., 1944, *A Treatise on the Mathematical Theory of Elasticity*, Dover Publications, New York.

Muskhelishvili, N. I., 1963, *Some Basic Problems of the Mathematical Theory of Elasticity*, P. Nordhoof, Gorningen, Holland.

Timoshenko, S., and Goodier, J. N., 1970, *Theory of Elasticity*, McGraw-Hill, New York.

Saada, A., 1974, *Elasticity Theory and Applications*, Pergamon Press, New York.

Lekhnitskii, S. G., 1977, *Theory of Elasticity of an Anisotropic Body*, Mir, Moscow.

Abousleiman,
Y., and Kanj,
M., 2003, “The Generalized Lamé Problem:—Part II: Applications in Poromechanics,” ASME J. Appl. Mech., 71, pp. 180–189.

Parnes,
R., 1991, “The Eccentric Lamé Problem: An Equivalent Perturbed Domain Solution,” Int. J. Solids Struct., 27(13), pp. 1605–1621.

Yiannopoulos,
A. Ch., 1996, “A Simplified Solution for Stresses in Thick-Wall Cylinders for Various Loading Conditions,” Comput. Struct., 60(4), pp. 571–578.

Zhang,
X., and Hasebe,
N., 1999, “Elasticity Solution for a Radially Nonhomogeneous Hollow Circular Cylinder,” ASME J. Appl. Mech., 66(3), pp. 589–606.

Chao,
C. K., and Tan,
C. J., 2000, “On the General Solutions for Annular Problems With a Point Heat Source,” ASME J. Appl. Mech., 67(3), pp. 511–518.

Chen,
T., Chung,
C.-T., and Lin,
W.-L., 2000, “A Revisit of a Cylindrically Anisotropic Tube Subjected to Pressuring, Shearing, Torsion, Extension and a Uniform Temperature Change,” Int. J. Solids Struct., 37(37), pp. 5143–5159.

Ting,
T. C. T., 1999, “New Solutions to Pressuring, Shearing, Torsion and Extension of a Cylindrically anisotropic Elastic Circular Tube or Bar,” Proc. R. Soc. London, Ser. A, 455, pp. 3527–3542.

Chau,
K. T., and Wei,
X. X., 2000, “Finite Solid Circular Cylinders Subjected to Arbitrary Surface Load. Part I—Analytic Solution,” Int. J. Solids Struct., 37(40), pp. 5707–5732.

Savage,
W. Z., and Braddock,
W. A., 1991, “A Model for Hydrostatic Consolidation of Pierre Shale,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(5), pp. 345–354.

Kurashige,
M., 1992, “Thermal Stresses of a Fluid-Saturated Poroelastic Hollow-Cylinder,” JSME Int. J., 35(4), pp. 386–391.

Rajapakse,
R. K. N. D., 1993, “Stress Analysis of Borehole in Poroelastic Medium,” J. Eng. Mech., 119(6), pp. 1205–1226.

Sherwood,
J. D., and Bailey,
L., 1994, “Swelling of Shale Around a Cylindrical Wellbore,” Proc. R. Soc. London, Ser. A, 444, pp. 161–184.

Wang,
X., 1995, “Thermal Shock in a Hollow Cylinder Caused by Rapid Arbitrary Heating,” J. Sound Vib., 183(5), pp. 899–906.

Abousleiman,
Y., Cheng,
A. H.-D., Jiang,
C., and Roegiers,
J.-C., 1996, “Poroviscoelastic Analysis of Borehole and Cylinder Problems,” Acta Mech., 119, pp. 175–219.

Cui,
L., Cheng,
A. H.-D., and Abousleiman,
Y., 1997, “Poroelastic Solution for an Inclined Borehole,” ASME J. Appl. Mech., 64, pp. 32–38.

Abousleiman,
Y., and Cui,
L., 1998, “Poroelastic Solutions in Transversely Isotropic Media for Wellbore and Cylinder,” Int. J. Solids Struct., 35, pp. 4905–4927.

Chau,
K. T., and Choi,
S. K., 1998, “Bifurcations of Thick-Walled Hollow Cylinders of Geomaterials Under Axisymmetric Compression,” Int. J. Numer. Analyt. Meth. Geomech., 22, pp. 903–919.

Abousleiman, Y., and Ekbote, S., 1999, “Porothermoelasticity in Transversely Isotropic Porous Materials,” *IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Media*, Sept., Stuttgart, Germany, pp. 145–152.

Kanj, M. and Abousleiman, Y., 2003, “Porothermoelastic Analyses of Anisotropic Hollow Cylinders,” *Proceedings of the 39th U.S. Rock Mechanics Symposium (Soil Rock America 2003)*, Cambridge, MA, June 23–25, pp. 1211–1218.

Lee,
S., Wang,
W. L., and Chen,
J. R., 2000, “Diffusion-Induced Stresses in a Hollow Cylinder: Constant Surface Stresses,” Mater. Chem. Phys., 64, pp. 123–130.

Cui,
L., and Abousleiman,
Y., 2001, “Time-Dependent Poromechanical Responses of Saturated Cylinders,” J. Eng. Mech., 127(4), pp. 391–398.

Kanj, M. Y., and Abousleiman, Y., 2003, “Porothermomechanics of Anisotropic Hollow Cylinders in Oedometric-Like Setups,” *CD-Proceedings of the 16th ASCE Engineering Mechanics Conference*, Seattle, WA, July 16–18.

Biot,
M. A., 1941, “General Theory of Three-Dimensional Consolidation,” J. Appl. Phys., 12, pp. 155–164.

Rice,
J. R., and Cleary,
M. P., 1976, “Some Basic Stress-Diffusion Solutions for Fluid Saturated Elastic Porous Media With Compressible Constituents,” Rev. Geophys. Space Phys., 14(2), pp. 227–241.

Carslaw, H. S., and Jeager, J. C., 1959, *Conduction of Heat in Solids*, Second Ed., Oxford University Press, London.

Sinclair,
G. B., and Meda,
G., 2001, “On Some Anomalies in Lamé’s Solutions for Elastic Solids With Holes,” ASME J. Appl. Mech., 68, pp. 132–134.

Kanj,
M., Abousleiman,
Y., and Ghanem,
R., 2003, “Anisotropic Poromechanics Solutions for the Hollow-Cylinder,” J. Eng. Mech., 129(11), pp. 1277–1287.