0
TECHNICAL PAPERS

Existence of Critical Wavelength for Gap Nucleation in Solidification on a Rigid Mold

[+] Author and Article Information
Faruk Yigit

Department of Mechanical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabiae-mail: fyigit@ksu.edu.sa

J. Appl. Mech 71(1), 96-108 (Mar 17, 2004) (13 pages) doi:10.1115/1.1641065 History: Received January 03, 2003; Revised July 16, 2003; Online March 17, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mizikar, E. A., Wojcik, W. M., and Li, K., 1967, “Method of Producing Steel Strip of Uniform Thickness by Direct Casting,” United States Letters Patent #3,345,738.
Morales, A., Glicksman, M. E., and Bilonia, H., 1977, “Influence of Mould Wall Microgeometry on Casting Structure,” Proc. Int. Conf. on Solidification, Sheffield Metallurgical Eng. Ass’n., Univ. Sheffield and The Metals Society, Sheffield, UK, pp. 184–192.
Wray,  P. J., 1981, “Geometric Features of Chill-Cast Surfaces,” Metall. Trans. B, 12B, pp. 167–176.
Buxmann, K., Boliger, M., and Gyongyos, I., 1981, “Mould With Roughened Surface for Casting Metals,” U.S. Letters Patent #3,345,738.
Laki,  R. S., Beech,  J., and Davies,  G. J., 1985, “Surface Structures of Chill and Continuously Cast Stainless Steels,” Iron and Steelmaking, 12, pp. 233–241.
Gaspar, T. A., 1987, “Textured Substrate and Method for the Direct, Continuous Casting of Metal Sheet Exhibiting Improved Uniformity,” U.S. Letters Patent #4,705,095.
Ostlund,  A., and West,  R., 1988, “Influence of Wheel Surface Roughness on Microstructure and Heat Transfer in Meltspun Fe0.79Si0.03C0.04B0.14,” Int. J. Rapid Solidif., 3, pp. 177–188.
Bartlett, E., Maringer, R., and Rayment, J., 1989, “Direct Strip Casting on Grooved Wheels,” U.S. Letters Patent #4,865,117.
Murakami,  H., Suzuki,  M., Kitagawa,  T., and Miyahara,  S., 1992, “Control of Uneven Solidified Shell Formation of Hypo-Peritectic Carbon Steels in Continuous Casting Mold,” J. Iron and Steel Inst. Japan, 78, pp. 105–112.
Haga,  T., and Motomura,  M., 1994, “Effect of Polishing Condition on the Roll of the Surface of Foils of Pure Aluminum and Al-Si Alloy Manufactured by Single Roll Rapid Solidification,” J. Japan Inst. Light Metals,44, pp. 22–27.
Sugitani,  Y., Nakamura,  M., Okuda,  M., Kawasaki,  M., and Miyahara,  S., 1992, “Control of Uneven Solidified Shell Formation of Hypo-Peritectic Carbon Steels in Continuous Casting Mold,” Trans. Iron Steel Inst. Jpn., 25, pp. B–91.
Weirauch, D. A., Jr., and Giron, A., 1998, “The Early Stages of Aluminum Solidification in the Presence of a Moving Meniscus,” Proceedings on the Integration of Material, Process and Product Design—A Conference Dedicated to the 70th Birthday of Owen Richmond, A. A. Balkema Publishers, Rotterdam, Netherlands, pp. 183–191.
Hector,  L. G., Howarth,  J. A., Richmond,  O., and Kim,  W.-S., 1999, “Mold Surface Wavelength Effect on Gap Nucleation in Solidification,” ASME J. Appl. Mech., 67, pp. 155–164.
Yigit,  F., and Hector,  L. G., 2000, “Critical Wavelengths for Gap Nucleation in Solidification. Part 1: Theoretical Methodology,” ASME J. Appl. Mech., 67, pp. 66–76.
Yigit,  F., and Hector,  L. G., 2000, “Critical Wavelengths for Gap Nucleation in Solidification. Part 2. Results for Selected Mold-Shell Material Combinations,” ASME J. Appl. Mech., 67, pp. 77–86.
Dundurs,  J., 1974, “Distortion of a Body Caused by Free Thermal Expansion,” Mech. Res. Commun., 1, pp. 121–124.
Yigit,  F., and Hector,  L. G., 2002, “Solidification of a Pure Metal With Finite Thermal Capacitance on a Sinusoidal Mold Surface,” J. Therm. Stresses, 25, pp. 663–690.
Yigit,  F., Hector,  L. G., and Richmond,  O., 2002, “A Theoretical Investigation of Pure Metal Solidification on a Deformable Mold in the Absence of Interfacial Coupling,” J. Therm. Stresses, 25, pp. 773–809.
Hector,  L. G., Kim,  W.-S., and Howarth,  J. A., 1999, “Thermomechanical Models of Pure Metal Solidification on a Periodic Mold Surface,” J. Therm. Stresses, 22, pp. 125–158.
Yigit,  F., and Barber,  J. R., 1994, “Effect of Stefan Number on Thermoelastic Instabilities in Unidirectional Solidification,” Int. J. Mech. Sci., 36, pp. 707–723.
Westergaard, H. M., 1964, Theory of Elasticity and Plasticity, Dover, New York.
Li,  N.-Y., and Barber,  J. R., 1991, “Thermoelastic Instability in Planar Solidification,” Int. J. Mech. Sci., 33, pp. 945–959.
Richmond,  O., Hector,  L. G., and Fridy,  J. M., 1990, “Growth Instability During Non-Uniform Directional Solidification of Pure Metals,” ASME J. Appl. Mech., 57, pp. 529–536.
Heinlein,  M., Mukherjee,  S., and Richmond,  O., 1986, “A Boundary Element Method of Analysis of Temperature Fields and Stresses During Solidification,” Acta Mech., 59, pp. 59–81.
Boltz, R. E., and Tuve, G. L., 1984, CRC Handbook of Tables for Applied Engineering and Science, CRC Press, Boca Raton, FL.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter, Thermal Conductivity, 1 , IFI/Plenum, New York.
Lucas,  L. D., 1972, “Density of Metals at High Temperatures in the Solid and Molten States, Part 2,” Mem. Sci. Rev. Metall., 69(6), pp. 479–492.
Baumeister, T., Avallone, E. A., and Baumeister III, T., 1978, Marks’ Standard Handbook for Mechanical Engineers, 8th Ed., McGraw-Hill, New York.
Wawra,  H. H., 1974, “The Elastomechanical Properties of Pure Iron and FeS2 in Different Crystallographic Directions as a Function of Temperature and Pressure,” Arch. Eisenhuettenwes., 45(5), pp. 317–320.
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D., 1978, Thermophysical Properties of Matter (Vol. 12, Thermal Expansion), IFI/Plenum, New York.
Zhang,  R., and Barber,  J. R., 1990, “Effects of Material Properties on the Stability of Static Thermoelastic Contact,” ASME J. Appl. Mech., 57, pp. 365–369.

Figures

Grahic Jump Location
Pure metal shell solidifying on a sinusoidal mold surface
Grahic Jump Location
Ptr versus t for selected values of λ: pure aluminum shell. (P0=10000 Pa,R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
Ptr versus t for selected values of λ: pure iron shell. (P0=10000 Pa,R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
Ptr versus t variation for aluminum shell showing the critical wavelength at λR=4.84 mm.(P0=2.0 MPa,R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
Ptr versus t variation for iron shell showing the critical wavelength at λR=9.63 mm.(P0=2.0 MPa,R0=10−5 m2sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
Ptr versus t at t=tR for selected λ, aluminum solidifying on copper, P0=10,000 Pa,h0=0.5 mm,R0=10−5 m2 sec °C/J, with critical wavelengths at λR1=0.22 mm and λR2=60.0 mm
Grahic Jump Location
Ptr versus t at t=tR for selected λ, iron solidifying on copper, P0=10,000 Pa,h0=0.5 mm,R0=10−5 m2 sec °C/J, with critical wavelengths at λR1=0.05 mm and λR2=194.3 mm
Grahic Jump Location
s0(tR) versus λ for selected values of P0: pure aluminum shell. (R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2sec °C/J⋅Pa).
Grahic Jump Location
s0(tR) versus λ for selected values of P0: pure iron shell. (R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
λR variation with P0.(R0=10−5 m2 sec °C/J,a=10−6 m,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
λR variation with R.(P0=1.0 MPa,R0=10−5 m2sec °C/J,a=10−6 m).
Grahic Jump Location
λR variation with a.(P0=1.0 MPa,R0=10−5 m2sec °C/J,R=0 m2 sec °C/J⋅Pa).
Grahic Jump Location
λR variation with R0.(P0=100.0 kPa,a=10−6 m,R=0 m2 sec °C/J⋅Pa).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In