0
TECHNICAL PAPERS

Fiber-Reinforced Membrane Models of McKibben Actuators

[+] Author and Article Information
W. Liu, C. R. Rahn

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802

J. Appl. Mech 70(6), 853-859 (Jan 05, 2004) (7 pages) doi:10.1115/1.1630812 History: Received August 20, 2002; Revised April 28, 2003; Online January 05, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Klute, G., Czerniecki, J., and Hannaford, B., 1999, “McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence,” IEEE International Conference on Advanced Intelligent Mechatronics, Sept. 19–22, Atlanta, GA, IEEE, Piscataway, NJ, pp. 1–5.
Tondu,  B., and Lopez,  P., 2000, “Modeling and Control of McKibben Artificial Muscle Robot Actuators,” IEEE Control Syst. Mag., Apr. , pp. 15–38.
Repperger, D., Phillips, C., Johnson, D., Harmon, R., and Johnson, K., 1997, “A Study of Pneumatic Muscle Technology for Possible Assistance in Mobility,” IEEE 19th International Conference, Oct. 30–Nov. 2, Chicago, IL, IEEE, Piscataway, NJ, pp. 1884–1887.
Reppberger, D., and Phillips, C., 2000, “Developing Intelligent Control From a Biological Perspective to Examine Paradigms for Activation Utilizing Pneumatic Muscle Actuators,” IEEE International Symposium on Intelligent Control, July 17–19, Pio, Patras, Greece, IEEE, Piscataway, NJ, pp. 205–209.
Caldwell,  D., Medrano-Cerda,  G., and Goodwin,  M., 1995, “Control of Pneumatic Muscle Actuators,” IEEE Control Syst. Mag., Feb. , pp. 40–48.
Van Leeuwan,  J. L., and Kier,  W. M., 1997, “Functional Design of Tentacles in Squid: Linking Sarcomere Ultrastructure to Gross Morphological Dynamics,” Philos. Trans. R. Soc. London, Ser. B, 264, pp. 1–21.
Clark,  R. B., and Cowey,  J. B., 1958, “Factors Controlling the Change of Shape of Some Worms,” J. Exp. Biol., 35, pp. 731–748.
Kier,  W. M., and Smith, K. K., 1985, “Tongues, Tentacles and Trunks: The Biomechanics of Movement in Muscular-Hydrostats,” Zool. J. Linnean Soc., 83, pp. 307–324.
Spencer, A. J. M., 1972, Deformation of Fibre-Reinforced Materials, Clarendon Press, Oxford, UK.
McCurley,  R. S., and Kier,  W. M., 1995, “The Functional Morphology of Starfish Tube Feet: The Role of a Crossed-Fiber Helical Array in Movement,” Biol. Bull., 188, Apr., pp. 197–209.
Chou,  Ching-Ping, and Hannaford,  B., 1996, “Measurement and Modeling of McKibben Pneumatic Artificial muscles,” IEEE Trans. Rob. Autom., 12(1), pp. 90–102.
Adkins,  J. E., and Rivlin,  R. S., 1952, “Large Elastic Deformations of Isotropic Materials IX,” Philos. Trans. R. Soc. London, Ser. A, 244, p. 505.
Green, A. E., and Adkins, J. E., 1960, Large Elastic Deformations, The Clarendon Press, Oxford, UK.
McDonald, P. H., 1995, Continuum Mechanics, PWS Publishing, Boston, MA.
Kydoniefs,  A. D., and Spencer,  A. J. M., 1969, “Finite Axisymmetric Deformations of an Initially Cylindrical Elastic Membrane,” Q. J. Mech. Appl. Math., 22, pp. 87–95.
Yang,  W. H., and Feng,  W. W., 1970, “On Axisymmetrical Deformation of Non-linear Membranes,” ASME J. Appl. Mech., 37, pp. 1002–1011.
Matsikoudi-Iliopoulou,  M., and Lianis,  G., 1982, “Non Linear Elastic Axisymmetric Deformation of Membranes With Torsion,” Acta Mech., 42, pp. 153–170.
Kydoniefs,  A. D., 1970, “Finite Axisymmetric Deformations of an Initially Cylindrical Membrane Reinforced With Inextensible Cords,” Q. J. Mech. Appl. Math., 23, pp. 481–488.
Kydoniefs,  A. D., 1970, “Finite Axisymmetric Deformations of Initially Cylindrical Reinforced Membranes,” Rubber Chem. Technol., 43, pp. 1677–1683.
Matsikoudi-Iliopoulou,  M., 1987, “Finite Axisymmetric Deformations With Torsion of an Initially Cylindrical Membrane Reinforced With One Family Inextensible Cords,” Int. J. Eng. Sci., 25(6), pp. 673–680.
Kydoniefs,  A. D., 1977, “Deformations of Corded Membranes With Applications to Tire Mechanics,” Lett. Appl. Eng. Sci., 5(1), pp. 63–83.

Figures

Grahic Jump Location
McKibben actuator model
Grahic Jump Location
Coordinate system definition
Grahic Jump Location
Actuator shape (Γ=0.0,α=30 deg,l0=5.0): undeformed (thick solid), f=0.0 and p=3.2 (thin solid) and experimental (* ), f=5.0 and p=6.327054 (dash-dotted), and f=5.0 and p=0.9538596 (dotted)
Grahic Jump Location
Strain versus pressure (α=30 deg,f=0.0,l0=5.0): solid (Γ=0.0), dashed (Γ=0.20), dash-dotted (Γ=0.35), and asterisk (Experiment). Circled point is shown in Fig. 4.
Grahic Jump Location
Midpoint radius enlargement versus pressure (l0=5,Γ=0.0,α=30 deg):f=0.0 (solid), f=1.0 (dashed), f=2.0 (dotted), f=5.0 (dash-dotted), and experiment with f=0.54 (* ). Circled point is shown in Fig. 4.
Grahic Jump Location
Fiber angle distribution (Γ=0.0,α=30 deg,f=0.0): solid (l0=5.0,p=3.2), dotted (l0=5.0,p=17.7), dash-dotted (l0=2.0,p=3.5), and dashed (l0=2.0,p=18.5)
Grahic Jump Location
Fiber n1 (solid), membrane n1 (dashed), fiber n2 (dotted), and membrane n2 (dash-dotted) stress distributions (Γ=0.0,α=30 deg,f=0.0,l0=5.0,p=3.2)
Grahic Jump Location
(a) Strain versus pressure, (b) midpoint radius enlargement versus pressure (l0=2.0,Γ=0.0,f=0.0):α=10.0° (dashed), α=20.0 deg (dotted), α=30.0 deg (dash-dotted), and α=40.0 deg (solid)
Grahic Jump Location
Strain versus pressure (Γ=0.0,α=30 deg,f=0.0):l0=1.0 (dashed), l0=2.0 (dotted), l0=3.0 (dash-dotted), and l0=5.0 (solid)
Grahic Jump Location
Strain versus pressure (l0=5,Γ=0.0,α=30 deg):f=0.0 (solid), f=1.0 (dashed), f=2.0 (dotted), and f=5.0 (dash-dotted)
Grahic Jump Location
Strain versus pressure (l0=2.0,Γ=0.0): dashed (α=20.0 deg,f=1.0), dotted (α=20.0 deg,f=5.0), dash-dotted (α=40.0 deg,f=1.0), and solid (α=40.0 deg,f=5.0)
Grahic Jump Location
Locked (β=54°44) strain ΔL* (solid) and midpoint radius enlargement ΔR* (dotted) versus initial fiber angle α. Numerical results for large p:ΔL (* ) and ΔR (○).
Grahic Jump Location
(a) Strain versus pressure; (b) midpoint radius enlargement versus pressure (Γ=0.0,f=0.0):α=60 deg,l0=1.0 (solid), and α=75 deg,l0=0.5 (dash-dotted)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In