0
TECHNICAL PAPERS

Higher-Order Beam Theories for Mode II Fracture of Unidirectional Composites

[+] Author and Article Information
D. V. T. G. Pavan Kumar

National Aerospace Laboratories, Bangalore 560 017, India   e-mail: pavan@css.cmmacs.ernet.in

B. K. Raghu Prasad

Civil Engineering Department, Indian Institute of Science, Bangalore 560 012, Indiae-mail: bkr@civil.iisc.ernet.in

J. Appl. Mech 70(6), 840-852 (Jan 05, 2004) (13 pages) doi:10.1115/1.1607357 History: Received April 12, 2002; Revised March 24, 2003; Online January 05, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Williams,  J. G., 1988, “On the Calculation of Energy Release Rates for Cracked Laminates,” Int. J. Fract., 36(2), pp. 101–119.
O’Brien, T. K., 1982, “Characterization of Delamination Onset and Growth in a Composite Laminate,” Damage in Composite Materials, K. L. Reifsnider, ed., American Society for Testing and Materials, ASTM-STP-775, pp. 140–167.
Carlsson, L. A., and Gillespie, Jr., J. W., 1989, “Mode II Interlaminar Fracture of Composites,” Application of Fracture Mechanics to Composite Materials, K. Friedrich, ed., Elsevier, Amsterdam, 6 , pp. 113–157.
Sela,  N., and Ishai,  O., 1989, “Interlaminar Fracture Toughness and Toughening of Laminated Composite Materials: A Review,” Composites, 20(5), pp. 423–435.
Barret,  J. D., and Foschi,  R. O., 1977, “Mode II Stress Intensity Factors for Cracked Wood Beams,” Eng. Fract. Mech., 9(3), pp. 371–378.
Russell, A. J., and Street, K. N., 1982, “Factors Affecting the Interlaminar Fracture Energy of Graphite/Epoxy Laminates,” Progress in Science and Engineering of Composites, ICCM-IV, T. Hayashi et al., eds., Japan Society for Composite Materials, Tokyo, 1 , pp. 279–286.
Carlsson,  L. A., Gillespie,  J. W., and Pipes,  R. B., 1986, “On the Analysis and Design of End Notch Flexure (ENF) for Mode II Testing,” J. Compos. Mater., 20(6), pp. 594–604.
Carlsson, L. A., Gillespie, Jr., J. W., and Whitney, J. M., 1986, “Interlaminar Fracture Mechanics Analysis of the End Notched Flexure Specimen,” Proceedings of the American Society for Composites—First Technical Conference, Technomic Publishing Company, Lancaster, PA, pp. 421–433.
Whitney, J. M., Gillespie, Jr., J. W., and Carlsson, L. A., 1987, “Singularity Approach to the Analysis of the End Notch Flexure Specimen,” Proceedings of the American Society for Composites—Second Technical Conference, Technomic Publishing Company, Lancaster, PA, pp. 391–398.
Whitney, J. M., 1987, “Stress Analysis of the End Notch Flexure Specimen for Mode II Delamination of Composite Materials,” AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conference, Part I, ASME, New York, pp. 676–681.
Whitney,  J. M., and Sun,  C. T., 1973, “A Higher Order Theory for Extensional Motion of Laminated Composites,” J. Sound Vib., 30(1), pp. 85–97.
Whitney,  J. M., 1990, “Analysis of Interlaminar Mode II Bending Specimens Using a Higher Order Beam Theory,” J. Reinf. Plast. Compos., 9(6), pp. 522–536.
Reissner,  E., 1950, “Variational Theorem in Elasticity,” J. Math. Phys., 29(1), pp. 90–95.
Williams,  J. G., 1989, “The Fracture Mechanics of Delamination Tests,” J. Strain Anal., 24(4), pp. 207–214.
Hashemi,  S., Kinloch,  A. J., and Williams,  J. G., 1990, “The Analysis of Interlaminar Fracture in Uniaxial Fibre-polymer Composites,” Proc. R. Soc. London, Ser. A, 427(1872), pp. 173–199.
Hashemi,  S., Kinloch,  A. J., and Williams,  J. G., 1990, “Mechanics and Mechanisms of Delamination in a Poly(Ether Sulphone)-Fibre Composite,” Compos. Sci. Technol., 37(4), pp. 429–462.
Wang,  Y., and Williams,  J. G., 1992, “Corrections for Mode II Fracture Toughness Specimens of Composite Materials,” Compos. Sci. Technol., 43(3), pp. 251–256.
Chatterjee,  S. N., 1991, “Analysis of Test Specimens for Interlaminar Mode II Fracture Toughness, Part 1: Elastic Laminates,” J. Compos. Mater., 25(5), pp. 470–493.
Zhou,  J., and He,  T., 1994, “On the Analysis of the End Notched Flexure Specimen for Measuring Mode II Fracture Toughness of Composite Materials,” Compos. Sci. Technol., 50(2), pp. 209–213.
Corleto,  C. R., and Hogan,  H. A., 1995, “Energy Release Rates for the ENF Specimen Using a Beam on an Elastic Foundation,” J. Compos. Mater., 29(11), pp. 1420–1436.
Davidson,  B. D., Krüger,  R., and König,  M., 1995, “Three Dimensional Analysis and Resulting Design Recommendations for Unidirectional and Multidirectional End Notched Flexure Tests,” J. Compos. Mater., 29(16), pp. 2108–2133.
Ding,  W., and Kortschot,  M. T., 1999, “A Simplified Beam Analysis of the End Notched Flexure Mode II Delamination Specimen,” Compos. Struct., 45(4), pp. 271–278.
Pavan Kumar, D. V. T. G., 1999, “Interlaminar Fracture Toughness of Composites—Higher Order Shear Deformation Beam Theories,” Ph.D. thesis, Indian Institute of Science, Bangalore, India.
Salpekar,  S. A., Raju,  I. S., and O’Brien,  T. K., 1988, “Strain Energy Release Rate Analysis of the End Notch Flexure Specimen Using the Finite Element Method,” J. Compos. Technol. Res., 10(4), pp. 133–139.
Sela,  N., Ishai,  O., and Banks-Sills,  L., 1989, “The Effect of Adhesive Thickness on Interlaminar Fracture Toughness of Interleaved CFRP Specimens,” Composites, 20(3), pp. 257–264.
Gillespie,  J. W., Carlsson,  L. A., and Pipes,  R. B., 1986, “Finite Element Analysis of the End Notch Flexure Specimen for Measuring Mode II Fracture Toughness,” Compos. Sci. Technol., 27(3), pp. 177–197.

Figures

Grahic Jump Location
ENF specimen and its stress analysis model
Grahic Jump Location
ENC specimen and its stress analysis model
Grahic Jump Location
Influence of crack length on normalized SERR for various shear deformation beam theories
Grahic Jump Location
Normalized interlaminar shear stress distribution ahead of the crack tip based on various shear deformation beam theories
Grahic Jump Location
Influence of various crack lengths on the normalized interlaminar shear stress distribution ahead of the crack tip
Grahic Jump Location
Normalized interlaminar shear stress distribution ahead of the crack tip for various E11/G13 values
Grahic Jump Location
Normalized interlaminar shear stress distribution ahead of the crack tip for various L/h values

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In