0
TECHNICAL PAPERS

Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion

[+] Author and Article Information
J. H. Davies

Department of Electronics and Electrical Engineering, Glasgow University, Glasgow, G12 8QQ, U.K.

J. Appl. Mech 70(5), 655-660 (Oct 10, 2003) (6 pages) doi:10.1115/1.1602481 History: Received April 12, 2002; Revised January 21, 2003; Online October 10, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Boley, B. A., and Weiner, J. H., 1997, Theory of Thermal Stresses, Dover, Mineola, NY.
Nowacki, W., 1986, Thermoelasticity, Pergamon, Oxford, UK, 2nd edition.
Hu,  S. M. 1989, “Stress From a Parallelepipedic Thermal Inclusion in a Halfspace,” J. Appl. Phys., 66, pp. 2741–2743.
Hu,  S. M. 1990, “Stress From Isolation Trenches in Silicon Substrates,” J. Appl. Phys., 67, pp. 1092–1101.
Freund,  L. B. 2000, “The Mechanics of Electronic Materials,” Int. J. Solids Struct., 37, pp. 185–196.
Jain,  S. C., Maes,  H. E., Pinardi,  K., and De Wolf,  I. 1996, “Stresses and Strains in Lattice-Mismatched Stripes, Quantum Wires, Quantum Dots, and Substrates in Si Technology,” J. Appl. Phys., 79, pp. 8145–8165.
Glas,  F. 1987, “Elastic State of the Thermodynamic Properties of Inhomogeneous Epitaxial Layers: Application to Immiscible III-V Alloys,” J. Appl. Phys., 62, pp. 3201–3208.
Glas,  F. 1991, “Coherent Stress Relaxation in a Half Space: Modulated Layers, Inclusions, Steps, and a General Solution,” J. Appl. Phys., 70, pp. 3556–3571.
Pinnington,  T., Sanderson,  A., Tiedje,  T., Pearsall,  T. P., Kasper,  E., and Presting,  H. 1992, “Ambient Pressure Scanning Tunneling Microscope Imaging of Hydrogen-Passivated Si/Ge Multilayers,” Thin Solid Films, 222, pp. 259–264.
Chen,  H., Feenstra,  R. M., Piva,  P. G., Goldberg,  R. D., Mitchell,  I. V., Aers,  G. C., Poole,  P. J., and Charbonneau,  S. 1999, “Enhanced Group-V Intermixing in InGaAs/InP Quantum Wells Studied by Cross-Sectional Scanning Tunneling Microscopy,” Appl. Phys. Lett., 75, pp. 79–81.
Gosling,  T. J., and Willis,  J. R. 1995, “Mechanical Stability and Electronic Properties of Buried Strained Quantum Well Arrays,” J. Appl. Phys., 77, pp. 5601–5610.
Faux,  D. A., Downes,  J. R., and O’Reilly,  E. P. 1996, “A Simple Method for Calculating Strain Distributions in Quantum-Wire Structures,” J. Appl. Phys., 80, pp. 2515–2517.
Faux,  D. A., Downes,  J. R., and O’Reilly,  E. P. 1997, “Analytic Solutions for Strain Distributions in Quantum-Wire Structures,” J. Appl. Phys., 82, pp. 3754–3762.
Grundmann,  M., Stier,  O., and Bimberg,  D. 1995, “InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure,” Phys. Rev. B, 52, pp. 11969–11981.
Downes,  J. R., Faux,  D. A., and O’Reilly,  E. P. 1997, “A Simple Method for Calculating Strain Distributions in Quantum Dot Structures,” J. Appl. Phys., 81, pp. 6700–6702.
Pryor,  C., Kim,  J., Wang,  L. W., Williamson,  A., and Zunger,  A. 1998, “Comparison of Two Methods for Describing the Strain Profiles in Quantum Dots,” J. Appl. Phys., 83, pp. 2548–2554.
Davies,  J. H. 1998, “Elastic and Piezoelectric Fields Around a Buried Quantum Dot: A Simple Picture,” J. Appl. Phys., 84, pp. 1358–1365.
Davies,  J. H. 1999, “Quantum Dots Induced by Strain,” Appl. Phys. Lett., 75, pp. 4142–4144.
Legrand,  B., Grandidier,  B., Nuys,  J. P., Stiévenard,  D., Gérard,  J. M., and Thierry-Mieg,  V. 1998, “Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy of Self-Assembled InAs Quantum Dots,” Appl. Phys. Lett., 73, pp. 96–98.
Chiu,  Y. P. 1977, “On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44, pp. 587–590.
Chiu,  Y. P. 1978, “On the Stress Field in Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform,” ASME J. Appl. Mech., 45, pp. 302–306.
Mindlin,  R. D., and Cheng,  D. H. 1950, “Nuclei of Strain in the Semi-Infinite Solid,” J. Appl. Phys., 21, pp. 926–930.
Mindlin,  R. D., and Cheng,  D. H. 1950, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Phys., 21, pp. 931–933.
Sen,  B. 1951, “Note on the Stresses Produced by a Nuclei of Thermoelastic Strain in a Semi-Infinite Elastic Solid,” Q. Appl. Math., 8, pp. 365–369.
Goodier,  J. N. 1937, “On the Integration of the Thermo-Elastic Equations,” Philos. Mag., 23, pp. 1017–1032.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York, 3rd edition.
Westergaard, H. M., 1952, Theory of Elasticity and Plasticity, Harvard University Press, Cambridge, MA.
Barber,  J. R. 1987, “Thermoelastic Distortion of the Half-Space,” J. Therm. Stresses, 10, pp. 221–228.
Barber, J. R., 2002, Elasticity, 2nd Ed., Kluwer, Dordrecht, The Netherlands.
Nowacki,  W., 1954, “Thermal Stresses in Anisotropic Bodies (I),” Arch. Mech. Stos. (Arch. Mech.) 6, pp. 481–492.
Hieke,  M. 1955, Z. Angew. Math. Mech., 35, pp. 285–294.
Garcia Blanco,  S., Glidle,  A., Davies,  J. H., Aitchison,  J. S., and Cooper,  J. M. 2001, “Electron Beam Induced Densification of Ge-Doped Flame Hydrolysis Silica for Waveguide Fabrication,” Appl. Phys. Lett., 79, pp. 2889–2891.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
Davies,  J. H., Bruls,  D. M., Vugs,  J. W. A. M., and Koenraad,  P. M. 2002, “Relaxation of a Strained Quantum Well at a Cleaved Surface,” J. Appl. Phys., 91, pp. 4171–4176.
Myklestad,  N. O. 1942, “Two Problems of Thermal Stress in the Infinite Solid,” ASME J. Appl. Mech., 9, pp. A136–A143.
Faivre,  G. 1964, “Déformations de Cohérence d’un Précipité Quadratique,” Phys. Status Solidi, 35, pp. 249–259.
Seo,  K., and Mura,  T. 1979, “The Elastic Field in a Half Space due to Ellipsoidal Inclusions With Uniform Dilational Eigenstrains,” ASME J. Appl. Mech., 46, pp. 568–572.
Glas,  F. 2001, “Elastic Relaxation of Truncated Pyramidal Quantum Dots and Quantum Wires in a Half Space: An Analytical Calculation,” J. Appl. Phys., 90, pp. 3232–3241.
Pearson,  G. S., and Faux,  D. A. 2000, “Analytical Solutions for Strain in Pyramidal Quantum Dots,” J. Appl. Phys., 88, pp. 730–736.
Lita,  B., Goldman,  R. S., Phillips,  J. D., and Battacharya,  P. K. 1999, “Interdiffusion and Surface Segregation and Stacked, Self-Assembled InAs/GaAs Quantum Dots,” Appl. Phys. Lett., 75, pp. 2797–2799.

Figures

Grahic Jump Location
Inclusions (dark gray) within the half space z>0 (light gray). Inclusions may be (a) fully buried or (b) exposed on the surface, and (c) shows a semi-infinite slab.
Grahic Jump Location
Displacement of a semi-infinite region due to rectangular wires with ε0=1, ν=1/3, width 10 units, and thickness 1 unit. Wire (a) is buried to a depth of 1 unit while wire (b) meets the surface. Light gray shows the region z>0 and dark gray shows the wire before the surroundings are strained. Thick lines show the displacement of the surface and of planes that define the edge of the wire with thin lines for their original positions.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In