The Analysis of Constrained Impulsive Motion

[+] Author and Article Information
L.-S. Wang, W.-T. Chou

Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan R.O.C.

J. Appl. Mech 70(4), 583-594 (Aug 25, 2003) (12 pages) doi:10.1115/1.1577599 History: Received May 23, 2001; Revised December 03, 2002; Online August 25, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Appell, P., 1923, Traité de Mécanique Rationnelle, Vol. 2, 4th Ed., Gauthier-Villars, Paris.
Whittaker, E. T., 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge, UK.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, Heinemann, London.
Goldstein, H., 1980, Classical Mechanics, Addison-Wesley, Redding, MA.
Rosenberg, R. M., 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw-Hill, New York.
Kane,  T. R., 1962, “Impulsive Motions,” ASME J. Appl. Mech., 29, pp. 715–718.
Papastavridis,  J. G., 1989, “Impulsive Motion of Ideally Constrained Mechanical Systems via Analytical Dynamics,” Int. J. Eng. Sci., 27(12), pp. 1445–1461.
Stronge,  W. J., 1990, “Rigid Body Collision With Friction,” Proc. R. Soc. London, Ser. A, 431, pp. 169–181.
Souchet,  R., 1993, “Analytical Dynamics of Rigid Body Impulsive Motions,” Int. J. Eng. Sci., 31(1), pp. 85–92.
Bahar,  L. Y., 1994, “On The Use of Quasi-Velocities in Impulsive Motion,” Int. J. Eng. Sci., 32(11), pp. 1669–1686.
Ibort,  A., de Leon,  M., Lacomba,  E. A., de Diego,  D. Martin, and Pitanga,  P., 1997, “Mechanical Systems Subjected to Impulsive Constraints,” J. Phys. A, 30, pp. 5835–5854.
Pfeiffer, F., and Glocker, C., 1996, Multibody Dynamics With Unilateral Contacts, John Wiley and Sons, New York.
Brogliato, B., 1996, Nonsmooth Impact Mechanics: Models, Dynamics, and Control, Springer-Verlag, London.
Lacomba,  E. A., and Tulczyjew,  W. M., 1990, “Geometric Formulation of Mechanical Systems With One-sided Constraints,” J. Phys. A, 23, pp. 2801–2813.
Genot,  F., and Brogliato,  B., 1999, “New Results on Painleve Paradoxes,” Eur. J. Mech. A/Solids, 18, pp. 653–677.
van der Schaft,  A. J., and Schumacher,  J. M., 1999, “Complementarity Modeling of Hybrid Systems,” IEEE Trans. Autom. Control, 43(4), pp. 483–490.
Neimark, Ju. I., and Fufaev, N. A., 1972, Dynamics of Nonholonomic Systems (Vol. 33 of Translations of Mathematical Monographs) American Mathematical Society, Providence, RI.
Greenwood, D. T., 1988, Principles of Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
Ibort,  A., de Leon,  M., Lacomba,  E. A., Marrero,  J. C., Martin de Diego,  D., and Pitanga,  P., 1998, “Geometric Formulation of Mechanical Systems Subjected to Time-Dependent One-Sided constraints,” J. Phys. A, 31, pp. 2655–2674.
Cortés,  J., de León,  M., de Diego,  D. Martín, and Martínez,  S., 2001, “Mechanical Systems Subjected to Generalized Non-holonomic Constraints,” Proc. R. Soc. London, Ser. A, 457, pp. 651–670.
Jourdain,  P. E. B., 1909, “Note on an Analogue of Gauss’ Principle of Least Constraint,” Quart. J. Pure Appl. Math., 40 , pp. 153–157.
Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody Systems, Springer-Verlag, New York.
Moon, F. C., 1998, Applied Dynamics, John Wiley and Sons, New York.
Wang,  L. S., and Pao,  Y. H., 2003, “Jourdain’s Variational Equation and Appell’s Equation of Motion for Nonholonomic Dynamical Systems,” Am. J. Phys., 73(1), pp. 72–82.
Pao, Y. H., and Wang, L. S., 2002, “A Unified Variational Principle for Dynamics of Particles and of Continua,” submitted for journal publication.
Lesser, M., 1995, The Analysis of Complex Nonlinear Mechanical Systems: A Computer Algebra Assisted Approach, World Scientific, Singapore.
Kane,  T. R., and Levinson,  D. A., 1980, “Formulation of Equations of Motion for Complex Spacecraft,” AIAA J. Guidance Control, 3 (2), pp. 99–112.
Scott,  D., 1988, “Can a Projection Method of Obtaining Equations of Motion Compete With Lagrange’s Equations?” Am. J. Phys., 56, pp. 451–456.
Blajer,  W., 1992, “A Projection Method Approach to Constrained Dynamic Analysis,” ASME J. Appl. Mech., 59, pp. 643–649.
Ibort,  A., de Leon,  M., Lacomba,  E. A., Marrero,  J. C., de Diego,  D. Martin, and Pitanga,  P., 2001, “Geometric Formulation of Carnot’s Theorem,” J. Phys. A, 34, pp. 1691–1712.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd Ed., Springer-Verlag, New York.
Abraham, R., and Marsden, J. E., 1978, Foundations of Mechanics, 2nd Ed., Benjamin/Cummings, Reading, MA.
Vershik,  A. M., and Faddeev,  L. D., 1981, “Lagrangian Mechanics in Invariant Form,” Sel. Math. Sov., 1 (4), pp. 339–350.
Tulczyjew, W. M., 1989, Geometric Formulation of Physical Theories: Statics and Dynamics of Mechanical Systems, Bibliopolis, Naples.
Gibbs,  J. W., 1879, “On the Fundamental Formulas of Dynamics,” Am. J. Math., 2, pp. 49–64.
Mach, E., 1960, The Science of Mechanics, Open Court, La Salle, IL.
Arnold, V. I., ed., 1988, Dynamical Systems III (Vol. 3 of Encyclopedia of Mathematical Sciences), Springer-Verlag, New York.
Chetaev,  N. G., 1932, “On the Principle of Gauss,” Kazan Univ. Bull. Phys. Math. Soc., 6 , pp. 68–71.
Smith,  C. E., and Liu,  P. P., 1992, “Coefficients of Restitution,” ASME J. Appl. Mech., 59, pp. 963–969.
Weatherburn, C. E., 1921, Elementary Vector Analysis, Open Court, La Salle, IL.
Junkins, John L., ed., 1990, Mechanics and Control of Large Flexible Structures, American Institute of Aeronautics and Astronautics, Washington, DC.


Grahic Jump Location
A ball rolls across the boundary between two surfaces
Grahic Jump Location
The impulsive motion of a sleigh with a knifeblade




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In