0
TECHNICAL PAPERS

Constraint Forces and the Method of Auxiliary Generalized Speeds

[+] Author and Article Information
S. Djerassi, H. Bamberger

Rafael, P.O. Box 2250, Haifa, Israel

J. Appl. Mech 70(4), 568-574 (Aug 25, 2003) (7 pages) doi:10.1115/1.1572902 History: Received March 07, 2001; Revised October 10, 2002; Online August 25, 2003
Copyright © 2003 by ASME
Topics: Force , Equations
Your Session has timed out. Please sign back in to continue.

References

Shabana, A., 1998, Dynamics of Multibody Systems, Cambridge University Press, New York.
Wehage,  R. A., and Haug,  E. J., 1982, “Generalized Coordinates Partitioning for Dimension Reduction Analysis of Constrained Dynamical Systems,” ASME J. Mech. Des., 104, pp. 247–255.
Nikravesh,  P. E., and Haug,  E. J., 1983, “Generalized Coordinate Partitioning for Analysis of Mechanical Systems With Nonholonomic Constraints,” ASME J. Mech., Transm., Autom. Des., 105, pp. 379–384.
Kim,  S. S., and Vanderploeg,  M. J., 1986, “QR Decomposition for State Space Representation of Constrained Mechanical Systems,” ASME J. Mech., Transm., Autom. Des., 108, pp. 183–188.
Kamman,  J. W., and Huston,  R. L., 1984, “Dynamics of Constrained Multibody Dynamics,” ASME J. Appl. Mech., 51, pp. 899–903.
Loduha,  T. A., and Ravani,  B., 1995, “On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems,” ASME J. Appl. Mech., 62, pp. 216–222.
Singh,  R. P., and Likins,  P. W., 1985, “Singular Value Decomposition for Constrained Dynamical Systems,” ASME J. Appl. Mech., 52, pp. 943–948.
Amirouche,  F. M. L., Jia,  T., and Ider,  S. K., 1988, “A Recursive Householder Transformation for Complex Dynamical Systems With Constraints,” ASME J. Appl. Mech., 55, pp. 729–734.
Liang,  C. D., and Lance,  G. M., 1987, “A Differentiable Null-Space Method for Constrained Dynamic Analysis,” ASME J. Mech., Transm., Autom. Des., 109, pp. 405–411.
Hemami,  H., and Weimer,  F. C., 1981, “Modelling of Nonholonomic Dynamic Systems With Applications,” ASME J. Appl. Mech., 48, pp. 177–182.
Nikravesh,  P. E., 1990, “Systematic Reduction of Multibody Equations of Motion to a Minimal Set,” Int. J. Non-Linear Mech., 25(2/3), pp. 143–151.
Schiehlen, W., Ed., 1990, Multibody Systems Handbook, Springer-Verlag, Berlin.
Papastavridis,  J. G., 1988, “On the Nonlinear Appell’s Equations and the Determination of Generalized Reaction Forces,” Int. J. Eng. Sci., 26(6), pp. 609–625.
Papastavridis,  J. G., 1990, “Maggi’s Equations of Motion and the Determination of Constraint Reactions,” J. Guid. Control Dyn., 13(2), pp. 213–220.
Udvadia, E. F., and Kalaba, E. R., 1996, Analytical Dynamics: A New Approach, Cambridge University Press, New York.
Kane, T. R., and Levinson, D. A., 1985, Dynamics: Theory and Applications, McGraw-Hill, New York.
Shan,  D., 1973, “Equations of Motion of Systems With Second-Order Nonlinear Nonholonomic Constraints,” PMM, 37 (2), pp. 349–354.
Kitzka,  F., 1986, “An Example for the Application of a Nonlinear Constraint of Second Order in Particles Mechanics,” Z. Angew. Math. Mech., 66(7), pp. 312–314.
Blajer,  W., 1992, “A Projection Method Approach to Constrained Dynamic Analysis,” ASME J. Appl. Mech., 59, pp. 643–649.
Whittaker, E. T., 1944, A Treatise on the Analytical Dynamics, Dover, New York.
Pars, L. A., 1979, Treatise on Analytical Dynamics, Ox Bow Press, Woodbridge, CT (reprint from the original 1965 edition).
Gelfand, I. M., and Fomin, S. V., 1963, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ.
Lanczos, C., 1970, The Variational Principles of Mechanics, 4th Ed., Dover, New York.
Djerassi,  S., 1997, “Determination of Noncontributing Forces and Noncontributing Impulses in Three-Phase Motions,” ASME J. Appl. Mech., 64, pp. 582–589.
Djerassi,  S., and Kane,  T. R., 1985, “Equations of Motion Governing the Deployment of a Flexible Linkage From a Spacecraft,” J. Astronaut. Sci., 33(4), pp. 417–428.
Blajer,  W., Bestle,  D., and Schiehlen,  W., 1994, “An Orthogonal Complement Matrix Formulation for Constrained Multibody Systems,” ASME J. Mech. Des., 116, pp. 423–428.
Hamel, G., 1949, Theoretische Mechanik, Springer-Verlag, Berlin.
Shan,  D., 1975, “On the Determination of Forces of Constraints Reaction,” PMM, 39 (6), pp. 1129–1134.
Kane, T. R., and Levinson, D. A., 1996, Dynamics Online: Theory and Implementation With Autolev, Online Dynamics, Sunnyvale, CA.
Kurdila,  A., Papastavridis,  J. G., and Kamat,  M. P., 1990, “Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems,” J. Guid. Control Dyn., 13(1), pp. 113–120.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In