Relationship Among Coefficient Matrices in Symmetric Galerkin Boundary Element Method for Two-Dimensional Scalar Problems

[+] Author and Article Information
G. Y. Yu

School of Civil & Environmental Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798e-mail: cgyyu@ntu.edu.sg

J. Appl. Mech 70(4), 479-486 (Aug 25, 2003) (8 pages) doi:10.1115/1.1598478 History: Received April 23, 2002; Revised December 17, 2002; Online August 25, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Sirtori,  S., 1979, “General Stress Analysis Method by Means of Integral Equations and Boundary Elements,” Meccanica, 14, pp. 210–218.
Bonnet,  M., Maier,  G., and Polizzotto,  C., 1998, “Symmetric Galerkin Boundary Element Methods,” Appl. Mech. Rev., 51(11), pp. 669–704.
Carini,  A., Diligent,  M., Maranesi,  P., and Zanella,  M., 1999, “Analytical Integrations for Two-Dimensional Elastic Analysis by the Symmetric Galerkin Boundary Element Method,” Comput. Mech., 23, pp. 308–323.
Krishnasamy, G., Rizzo, F. J., and Rudolphi, T. J., 1991, “Hypersingular Boundary Integral Equations: Their Occurrence, Interpretation, Regularization and Computation,” Developments in Boundary Element Methods, Vol. 7, P. K. Banerjee, and S. Kobayashi, eds., Elsevier Applied Science Publishers, New York.
Dominguez,  J., Ariza,  M. P., and Gallego,  R., 2000, “Flux and Traction Boundary Elements without Hypersingular or Strongly Singular Integrals,” Int. J. Numer. Methods Eng., 48, pp. 111–135.
Tanaka,  M., Sladek,  V., and Sladek,  J., 1994, “Regularization Techniques Applied to Boundary Element Methods,” Appl. Mech. Rev., 47(10), pp. 457–499.
Hadamard, J., 1923, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, CT.
Monegato,  G., 1994, “The Numerical Evaluation of Hypersingular Integrals,” J. Comput. Appl. Math., 50, pp. 9–31.
Aimi,  A., Carini,  A., Diligenti,  M., and Monegato,  G., 1998, “Numerical Integration Schemes for Evaluation of (Hyper) singular Integrals in 2D BEM,” Comput. Mech., 22, pp. 1–11.
Gray,  L. J., Martha,  L. F., and Ingraffea,  A. R., 1990, “Hypersingular Integrals in Boundary Element Fracture Analysis,” Int. J. Numer. Methods Eng., 29, pp. 1135–1158.
Guiggiani,  M., 1994, “Hypersingular Formulation for Boundary Stress Evaluation,” Eng. Anal. Boundary Elem., 13, pp. 169–179.
Guiggiani,  M., 1995, “Hypersingular Boundary Integral Equations Have an Additional Free Term,” Comput. Mech., 16, pp. 245–248.
Gallego,  R., and Dominguez,  J., 1996, “Hypersingular BEM for Transient Elastodynamics,” Int. J. Numer. Methods Eng., 39, pp. 1681–1705.
Carini,  A., Diligenti,  M., and Salvadori,  A., 1999, “Implementation of a Symmetric Boundary Element Method in Transient Heat Conduction with Semi-Analytical Integrations,” Int. J. Numer. Methods Eng., 46, pp. 1819–1843.
Yu,  G. Y., Mansur,  W. J., Carrer,  J. A. M., and Gong,  L., 2000, “Stability of Galerkin and Collocation Time Domain Boundary Element Methods as Applied to Scalar Wave Equation,” Comput. Struct., 74, pp. 495–506.
Mansur, W. J., 1983, “A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method,” Ph.D. thesis, University of Southampton.
Yu,  G. Y., Mansur,  W. J., Carrer,  J. A. M., and Gong,  L., 1998, “A Linear θ Method Applied to 2D Time-Domain BEM,” Commun. Numer. Methods Eng., 14(12), pp. 1171–1180.
Mansur,  W. J., Yu,  G. Y., Carrer,  J. A. M., Lie,  S. T., and Siquiera,  E. F. N., 2000, “The θ Scheme for Time-Domain BEM/FEM Coupling Applied to the 2-D Scalar Wave Equation,” Commun. Numer. Methods Eng., 16, pp. 439–448.


Grahic Jump Location
Definition of some symbols
Grahic Jump Location
Two special cases for linear elements
Grahic Jump Location
One-dimensional rod under Heaviside-type forcing function
Grahic Jump Location
Comparison between the results from TCBEM and SGBEM, θ=1.4 and β=0.6
Grahic Jump Location
Results at point A(a/2,b/2) from SGBEM, θ=1.0 and β=0.6
Grahic Jump Location
Results at point E(1.6R,0) from SGBEM and BEM/FEM coupling method, θ=1.4 and β=0.6




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In