0
TECHNICAL PAPERS

The Stress Response of Radially Polarized Rotating Piezoelectric Cylinders

[+] Author and Article Information
D. Galic, C. O. Horgan

Structural and Solid Mechanics Program, Department of Civil Engineering, University of Virginia, Charlottesville, VA 22904

J. Appl. Mech 70(3), 426-435 (Jun 11, 2003) (10 pages) doi:10.1115/1.1572900 History: Received May 05, 2002; Revised November 08, 2002; Online June 11, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
Berlincourt, D. A., 1971, “Piezoelectric Crystals and Ceramics,” Ultrasonic Transducer Materials, O. E. Mattiat, ed., Plenum Press, New York, pp. 63–124.
Berlincourt, D. A., Curran, D. R., and Jaffe, H., 1964, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers,” Physical Acoustics: Principles and Methods, W. P. Mason, ed., Academic Press, New York, pp. 169–270.
Jaffe, B., Cook, Jr., W. R., and Jaffe, H., 1971, Piezoelectric Ceramics, Academic Press, London.
Destuynder, P., 1999, “A Few Remarks on the Controllability of an Aeroacoustic Model Using Piezo-Devices,” Smart Structures, J. Holnicki-Szulc and J. Rodellar, eds., Kluwer Academic Publishers, Dordrecht, pp. 53–62.
Jiang, H. W., Schmid, F., Brand, W., and Tomlinson, G. R., 1999, “Controlling Pantograph Dynamics Using Smart Technology,” Smart Structures, J. Holnicki-Szulc and J. Rodellar, eds., Kluwer, Dordrecht, pp. 125–132.
Kawiecki, G., 1999, “Piezogenerated Elastic Waves for Structural Health Monitoring,” Smart Structures, J. Holnicki-Szulc and J. Rodellar, eds., Kluwer, Dordrecht, pp. 133–142.
Gandhi, M. V., and Thompson, B. S., 1992 Smart Materials and Structures, Chapman and Hall, London.
Adelman,  N. T., Stavsky,  Y., and Segal,  E., 1975, “Axisymmetric Vibrations of Radially Polarized Piezoelectric Ceramic Cylinders,” J. Sound Vib., 38, pp. 245–254.
Parton, V. Z., and Kudryavtsev, B. A., 1988, Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publishers, New York, (translated by E. G. Strel’chenko).
Heyliger,  P., 1997, “A Note on the Static Behavior of Simply Supported Piezoelectric Cylinders,” Int. J. Solids Struct., 34, pp. 3781–3794.
Heyliger,  P., and Wu,  Y.-C., 1999, “Electric Fields in Layered Piezoelectric Spheres,” Int. J. Eng. Sci., 37, pp. 143–161.
Chen,  W.-Q., 1999, “Problems of Radially Polarized Piezoelectric Bodies,” Int. J. Solids Struct., 36, pp. 4317–4332.
Chen,  C., Shen,  Y., and Liang,  X., 1999, “Three Dimensional Analysis of Piezoelectric Circular Cylindrical Shell of Finite Length,” Acta Mech., 134, pp. 235–249.
Galic,  D. and Horgan,  C. O., 2002, “Internally Pressurized Radially Polarized Piezoelectric Cylinders,” J. Elast., 66, pp. 257–272.
Horgan,  C. O., and Baxter,  S. C., 1996, “Effects of Curvilinear Anisotropy on Radially Symmetric Stresses in Anisotropic Linearly Elastic Solids,” J. Elast., 42, pp. 31–48.
Dunn,  M. L., and Taya,  M., 1994, “Electroelastic Field Concentrations In and Around Inhomogeneities in Piezoelectric Solids,” ASME J. Appl. Mech., 61, pp. 474–475.

Figures

Grahic Jump Location
Hollow circular cylinder subject to uniform internal pressure pi and applied voltage V, rotating with constant velocity ω
Grahic Jump Location
Rotating hollow PZT-4 cylinder: Ω=1. Case 1: plots for stresses and potential for η=1.3, 2, 4 (η=b/a).
Grahic Jump Location
Rotating hollow PZT-4 cylinder: Ω=1. Case 2: plots for stresses and potential for η=1.3, 2, 4 (η=b/a).
Grahic Jump Location
Rotating hollow PZT-4 cylinder: Ω=1. Case 3: plots for stresses and potential for η=1.3, 2, 4 (η=b/a).
Grahic Jump Location
Rotating hollow PZT-4 cylinder: Ω=1. Modified Case 2 (Φ1(0)=2): plots for stresses and potential for η=1.3, 2, 4 (η=b/a).
Grahic Jump Location
Rotating hollow PZT-4 cylinder: Ω=5. Case 3: plots for stresses and potential for η=1.3, 2, 4 (η=b/a).
Grahic Jump Location
Stress plots for rotating solid circumferentially orthotropic elastic cylinder of radius b(Ω=5). The elastic constants are identical to those of PZT-4.
Grahic Jump Location
Rotating solid PZT-4 cylinder of radius b(Ω=5): plots for the stresses and potential versus ρ=r/b

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In