0
TECHNICAL PAPERS

Stabilization of Frictional Sliding by Normal Load Modulation

[+] Author and Article Information
A. Cochard

Laboratoire de Détection Géophysique, CEA, B. P. 12, 91680 Bruyères-le-Cha⁁tel, France Laboratoire de Géologie (UMR 8538), École Normale Supérieure, 24, rue Lhomond, 75231 Paris, Cedex 05, France

L. Bureau, T. Baumberger

UMR 7588, Université Denis Diderot (Paris 7), 2, place Jussieu, 75251 Paris, Cedex 05, France

J. Appl. Mech 70(2), 220-226 (Mar 27, 2003) (7 pages) doi:10.1115/1.1546241 History: Received August 24, 2001; Revised April 24, 2002; Online March 27, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Main elements of the experimental setup: translation stage (Drv); loading leaf spring (Lsp); displacement gauge (Gg); vibration exciter (Vb); weighting spring (Spr); accelerometer (Acc). The labeled parameters (K, V, M, γ) are defined in the text.
Grahic Jump Location
Stability diagram for different values of the modulation amplitude. For given V and εeff, bifurcation from stick-slip to stable sliding occurs when the control parameter K/W0 overcomes the plotted critical value: εeff=0 (•); 0.045 (▵); 0.09 (▪); 0.13 (□); 0.18 (▴). For the sake of clarity, typical standard deviations are plotted as error bars only for εeff=0. The solid line curves are the output of the numerical study (see Section 3.3). The larger εeff the lower the curve at V=1 μm⋅s−1.
Grahic Jump Location
Time evolution of the loading spring elongation for V=8 μm⋅s−1 and different modulation amplitudes εeff indicated at the right end of each trace. A vertical offset has been added to each trace in order to display clearly the bifurcation sequence from stick-slip to stable sliding. The inset is a blow up of the stable sliding trace showing the remaining oscillating response at the frequency of the load modulation (f=120 Hz, much higher than the stick-slip frequency).
Grahic Jump Location
Reduced critical load versus εeff for different driving velocities: V(μm⋅s−1)=1 (▵); 5 (•); 10 (□); 30 (▪); 50 (○). The curves are the output of the numerical study (see Section 3.3) labeled with the corresponding velocities in μm⋅s−1 .
Grahic Jump Location
Equivalent mechanical circuit of the slider/track system. K is the stiffness of the loading spring, κ is the one of the interface.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In