Elastic Fields of Quantum Dots in Multilayered Semiconductors: A Novel Green’s Function Approach

[+] Author and Article Information
B. Yang

Structures Technology, Inc., 543 Keisler Drive, Suite 204, Cary, NC 27511   e-mail: boyang@boulder.nist.gov

E. Pan

Department of Civil Engineering, University of Akron, Akron, OH 44325

J. Appl. Mech 70(2), 161-168 (Mar 27, 2003) (8 pages) doi:10.1115/1.1544540 History: Received December 16, 2001; Revised June 08, 2002; Online March 27, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Bimberg, D., Grundmann, M., and Ledentsov, N. N., 1998, Quantum Dot Heterostructures, John Wiley and Sons, New York.
Brunner,  K., 2002, “Si/Ge Nanostructures,” Rep. Prog. Phys., 65, pp. 27–72.
Freund,  L. B., and Johnson,  H. T., 2001, “Influence of Strain on Functional Characteristics of Nanoelectronic Devices,” J. Mech. Phys. Solids, 49, pp. 1925–1935.
Xie,  Q., Madhukar,  A., Chen,  P., and Kobayashi,  N. P., 1995, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett., 75, pp. 2542–2545.
Tersoff,  J., Teichert,  C., and Lagally,  M. G., 1996, “Self-Organization in Growth of Quantum Dot Supperlattices,” Phys. Rev. Lett., 76, pp. 1675–1678.
Ishikawa,  H., Shoji,  H., Nakata,  Y., Mukai,  K., Sugawara,  M., Egawa,  M., Otsuka,  N., Sujiyama,  Y., Futatsugi,  T., and Yokoyama,  N., 1998, “Self-Organized Quantum Dots and Lasers,” J. Vac. Sci. Technol. A, 16, pp. 794–800.
Springholz,  G., Pinczolits,  M., Holy,  V., Zerlauth,  S., Vavra,  I., and Bauer,  G., 2001, “Vertical and Lateral Ordering in Self-Organized Quantum Dot Supperlattices,” Physica E (Amsterdam), 9, pp. 149–163.
Le Ru,  E. C., Bennett,  A. J., Roberts,  C., and Murray,  R., 2002, “Strain and Electronic Interactions in InAs/GaAs Quantum Dot Multilayers for 1300 nm Emission,” J. Appl. Phys., 91, pp. 1365–1370.
Grundmann,  M., Stier,  O., and Bimberg,  D., 1995, “InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure,” Phys. Rev. B, 52, pp. 11,969–11,981.
Benabbas,  T., Francois,  P., Androussi,  Y., and Lefebvre,  A., 1996, “Stress Relaxation in Highly Strained InAs/GaAs Structures as Studied by Finite Element Analysis and Transmission Electron Microscopy,” J. Appl. Phys., 80, pp. 2763–2767.
Johnson,  H. T., Freund,  L. B., Akyuz,  C. D., and Zaslavsky,  A., 1998, “Finite Element Analysis of Strain Effects on Electronic and Transport Properties in Quantum Dots and Wires,” J. Appl. Phys., 84, pp. 3714–3725.
Kret,  S., Benabbas,  T., Delamarre,  C., Androussi,  Y., Dubon,  A., Laval,  J. Y., and Lefebvre,  A., 1999, “High Resolution Electron Microscope Analysis of Lattice Distortions and in Segregation in Highly Strained In0.35Ga0.65As Coherent Islands Grown on GaAs(001),” J. Appl. Phys., 86, pp. 1988–1993.
Jogai,  B., 2001, “Three-Dimensional Strain Field Calculations in Multiple InN/AIN Wuutzite Quantum Dots,” J. Appl. Phys., 90, pp. 699–704.
Johnson,  H. T., and Freund,  L. B., 2001, “The Influence of Strain on Confined Electronic States in Semiconductor Quantum Structures,” Int. J. Solids Struct., 38, pp. 1045–1062.
Daruka,  I., Barabasi,  A. L., Zhou,  S. J., Germann,  T. C., Lomdahl,  P. S., and Bishop,  A. R., 1999, “Molecular-Dynamics Investigation of the Surface Stress Distribution in a Ge/Si Quantum Dot Superlattice,” Phys. Rev. B, 60, pp. R2150–R2153.
Kikuchi,  Y., Sugii,  H., and Shintani,  K., 2001, “Strain Profiles in Pyramidal Quantum Dots by Means of Atomistic Simulation,” J. Appl. Phys., 89, pp. 1191–1196.
Makeev,  M. A., and Maduhukar,  A., 2001, “Simulations of Atomic Level Stresses in Systems of Buried Ge/Si Islands,” Phys. Rev. Lett., 86, pp. 5542–5545.
Ru,  C. Q., 1999, “Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half Plane,” ASME J. Appl. Mech., 66, pp. 315–322.
Faux,  D. A., and Pearson,  G. S., 2000, “Green’s Tensors for Anisotropic Elasticity: Application to Quantum Dots,” Phys. Rev. B, 62, pp. R4798–R4801.
Davies,  J. H., 1998, “Elastic and Piezoelcetric Fields around a Buried Quantum Dot: A Simple Picture,” J. Appl. Phys., 84, pp. 1358–1365.
Davies,  J. H., 1999, “Quantum Dots Induced by Strain from Buried and Surface Stressors,” Appl. Phys. Lett., 75, pp. 4142–4144.
Andreev,  A. D., Downes,  J. R., Faux,  D. A., and O’Reilly,  E. P., 1999, “Strain Distributions in Quantum Dots of Arbitrary Shape,” J. Appl. Phys., 86, pp. 297–305.
Pearson,  G. S., and Faux,  D. A., 2000, “Analytical Solutions for Strain in Pyramidal Quantum Dots,” J. Appl. Phys., 88, pp. 730–736.
Pan,  E., and Yang,  B., 2001, “Elastostatic Fields in an Anisotropic Substrate due to a Buried Quantum Dot,” J. Appl. Phys., 90, pp. 6190–6196.
Yang,  B., and Pan,  E., 2001, “Efficient Evaluation of Three-Dimensional Green’s Functions for Anisotropic Elastostatic Multilayered Composites,” Eng. Anal. Boundary Elem., 26, pp. 355–366.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Boston.
Tsai, S. W., and Hahn, H. T., 1980, Introduction to Composite Materials, Technomic Publishing, Westport, CT.
Pan,  E., 1991, “Dislocation in an Infinite Poroelastic Medium,” Acta Mech., 87, pp. 105–115.
Romanov,  A. E., Beltz,  G. E., Fischer,  W. T., Petroff,  P. M., and Speck,  J. S., 2001, “Elastic Fields of Quantum Dots in Subsurface Layers,” J. Appl. Phys., 89, pp. 4523–4531.
Pan,  E., and Yuan,  F. G., 2000, “Three-Dimensional Green’s Functions in Anisotropic Bimaterials,” Int. J. Solids Struct., 37, pp. 5329–5351.
Pan,  E., Yang,  B., Cai,  X., and Yuan,  F. G., 2001, “Stress Analyses Around Holes in Composite Laminates Using Boundary Element Method,” Eng. Anal. Boundary Elem., 25, pp. 31–40.
Yang,  B., 2002, “Examination of Free-Edge Crack Nucleation Around an Open Hole in Composite Laminates,” Int. J. Fract., 115, pp. 173–191.
Stroh,  A. N., 1958, “Dislocations and Cracks in Anisotropic Elasticity,” Philos. Mag., 3, pp. 625–646.
Stroh,  A. N., 1962, “Steady State Problems in Anisotropic Elasticity,” J. Math. Phys., 41, pp. 77–103.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, Oxford, UK.
Yang,  B., and Pan,  E., 2001, “Three-Dimensional Green’s Functions in Anisotropic Trimaterials,” Int. J. Solids Struct., 39, pp. 2235–2255.
Tonon,  F., Pan,  E., and Amadei,  B., 2001, “Green’s Functions and Boundary Element Formulation for 3D Anisotropic Media,” Comput. Struct., 79, pp. 469–482.
Holy,  V., Springholz,  G., Pinezolits,  M., and Bauer,  G., 1999, “Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices,” Phys. Rev. Lett., 83, pp. 356–359.
Harrison, P., 2000, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, John Wiley and Sons, New York.


Grahic Jump Location
A multilayered heterostructure with embedded islands of misfit strains
Grahic Jump Location
Point-force Green’s function problem of a multilayered heterostructure (Fig. 1)
Grahic Jump Location
Four examples of a heterostructure with alternating layers of GaAs-spacer and InAs-wetting on a GaAs substrate, plus a fresh wetting layer on the top: (a) a single QD; (b) a vertical array of QDs; (c) a horizontal rectangular array of QDs; (d) a single QD with varying ratio of thickness between top wetting and spacer layers
Grahic Jump Location
Elastic fields on top surface induced by a single QD (Fig. 3a): (a) normalized hydrostatic strain εkk0; (b) normalized vertical displacement component −u3/(ε0a)
Grahic Jump Location
Vertical variation of normalized nonzero strain and stress components over a single QD (Fig. 3a): (a) ε112211) and ε330; (b) σ112211) and σ330 in 1011Pa
Grahic Jump Location
Induced elastic fields along a line (x1,0,0) on top surface due to a vertical array of up to nine QDs (Fig. 3b): (a) normalized hydrostatic strain εkk0; (b) normalized vertical displacement component −u3/(ε0a)
Grahic Jump Location
Induced elastic fields along a line (x1,0,0) on top surface due to a horizontal rectangular array of up to 9×9 QDs (Fig. 3c): (a) normalized hydrostatic strain εkk0; (b) normalized vertical displacement component −u3/(ε0a)
Grahic Jump Location
Variation of elastic fields at three locations on top surface with top wetting layer thickness Lw (Fig. 3d): (a) normalized hydrostatic strain εkk0; (b) normalized vertical displacement component −u3/(ε0a). The results for the extreme case Lw=0 are indicated by symbols.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In