0
TECHNICAL PAPERS

An Extended Finite Element Method for Two-Phase Fluids

[+] Author and Article Information
J. Chessa, T. Belytschko

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

J. Appl. Mech 70(1), 10-17 (Jan 23, 2003) (8 pages) doi:10.1115/1.1526599 History: Received December 04, 2001; Revised March 12, 2002; Online January 23, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Huerta,  A., and Liu,  W. K., 1988, “Viscous Flow With Large Free-Surface Motion,” Comput. Methods Appl. Mech. Eng., 69(3), pp. 277–324,
Tezduyar,  T. E., Behr,  M., and Liou,  J., 1992, “A New Strategy for Finite Element Flow Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedures: I. The Concept and Preliminary Tests,” Comput. Methods Appl. Mech. Eng., 94(3), pp. 339–353.
Tezduyar,  T. E., Behr,  M., Mittal,  S., and Liou,  J., 1992, “A New Strategy for Finite Element Flow Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedures: II. Computation of Free-Surface Flows, Two-Liquid Flows and Flows With Drifting Cylinders,” Comput. Methods Appl. Mech. Eng., 94(3), pp. 359–371.
Noh, W., and Woodward, P., 1976, “A Simple Line Interface Calculation,” Proceedings, Fifth International Conference on Fluid Dynamics, A. I. van de Vooran and P. J. Zandberger eds., Springer-Verlag, New York.
Hirt,  C. W., and Nichols,  B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., 39(1), pp. 201–225.
Osher,  S., and Sethian,  J. A., 1988, “Propagation of Fronts With Curvature Based Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys., 79, p. 12.
Sethian, J. A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK.
Harlow,  J. H., and Welch,  J. E., 1996, “Numerical Study of Large Amplitude Free Surface Motion,” Phys. Fluids, 9, pp. 842–851.
Belytschko,  T., and Black,  T., 1999, “Elastic Crack Growth in Finite Elements With Minimal Remeshing,” Int. J. Numer. Methods Eng., 45(5), pp. 601–620.
Moës,  N., Dolbow,  J., and Belytschko,  T., 1999, “A Finite Element Method for Crack Growth Without Remeshing,” Int. J. Numer. Methods Eng., 46, pp. 131–150.
Belytschko,  T., Moës,  N., Usui,  S., and Parimi,  C., 2001, “Arbitrary Discontinuities in Finite Element,” Int. J. Numer. Methods Eng., 50(4), pp. 993–1013.
Krongauz, Y., and Belytschko, T., 1997, “EFG Approximation With Discontinuous Derivatives,” Int. J. Numer. Methods Eng., accepted for publication.
Sukumar, N., Chopp, D. L., Moës, N., and Belytschko, T., 2000, “Modeling Holes and Inclusions by Level Sets in the Extended Finite Element Method,” Comput. Methods Appl. Mech. Eng., submitted for publication.
Wagner,  G. J., Moës,  N., Liu,  W. K., and Belytschko,  T., 2001, “The Extended Finite Element Method for Rigid Particles in Stokes Flow,” Int. J. Numer. Methods Eng., 51(3), pp. 293–313.
Chessa, J., Smolinski, P., and Belytschko, T., 2002, “The Extended Finite Element Method for Stefan Problems,” Int. J. Numer. Methods Eng., accepted for publication.
Dolbow, J., and Merle, R., 2001, “Modeling Dendritic Solidification With the Extended Finite Element Method,” Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, K. J. Bathe, ed., Boston, Elsevier, New York, pp. 1135–1138.
Renaud, M., and Dolbow, J., 2003, “Solving Thermal and Phase Change Problems With the Extended Finite Element Method,” Computational Mechanics., accepted for publication.
Dhatt,  G., Gao,  D. M., and Cheikh,  A. B., 1990, “A Finite Element Simulation of Metal Flow in Moulds,” Int. J. Numer. Methods Eng., 30, pp. 821–831.
Usmani,  A. S., Cross,  J. T., and Lewis,  R. W., 1992, “A Finite Element Model for the Simulations of Mould Filling in Metal Casting and Associated Heat Transfer,” Int. J. Numer. Methods Eng., 35, pp. 787–806.
Peng,  D., Merriman,  B., Osher,  S., Zhao,  H., and Kang,  M., 1999, “A PDE-Based Fast Local Level Set Method,” J. Comput. Phys., 155, pp. 410–438.
Barth,  T., and Sethian,  J. A., 1998, “Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains,” J. Comput. Phys., 145, pp. 1–40.
Rao,  V. S., Hughes,  T. J. R., and Garikipati,  K., 2000, “On Modeling Thermal Oxidation of Silicon II: Numerical Aspects,” Int. J. Numer. Methods Eng., 47, pp. 359–377.
Quecedo,  M., and Pastor,  M., 2001, “Application of the Level Set Method to the Finite Element Solution of Two-Phase Flows,” Int. J. Numer. Methods Eng., 50, pp. 645–663.
Sussman,  M., Almgren,  A., Bell,  J. B., Colella,  P., Howell,  L. H., and Welcome,  M. L., 1999, “An Adaptive Level Set Approach for Incompressible Two-Phase Flows,” Comput. Phys., 148, pp. 81–124.
Sussman,  M., and Fatemi,  E., 1999, “An Efficient Interface Preserving Level Set Re-distancing Algorithm and Its Applications to Interfacial Incompressible Fluid Flow,” J. Sci. Comput., 20(4), pp. 1165–1191.
Sussman,  M., Fatemi,  E., Smereka,  P., and Osher,  S. 1997, “An Improved Level Set method for Incompressible Two-Phase Flows,” Comput. Fluids, 27(5), pp. 663–680.
Sussman,  M., Smereka,  P., and Osher,  S., 1994, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows,” J. Comput. Phys., 114, pp. 146–159.
Caide,  R., Fedkiw,  R. P., and Anderson,  C., 2001, “A Numerical Method for Two-Phase Flow Consisting of Separate Compressible and Incompressible Regions,” J. Comput. Phys., 166(1), pp. 1–27.
Merriman, T. B., Fedkiw, R. P., Aslam, P., and Osher, S., 2003, “A Non-Oscillatory Eulerian Approach to Interfaces in Multi-Material Flows,” J. Comput. Phys., to appear.
Belytschko, T., Liu, W. K., and Moran, B., 2000, Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons, New York.
Melenk,  J. M., and Babuška,  I., 1996, “The Partition of Unity Method: Basic Theory and Applications,” Comput. Methods Appl. Mech. Eng., 139, pp. 289–314.
Zienkiewicz, O. C., and Taylor, R. L., 2000, The Finite Element Method, Volume 3: Fluid dynamics, Butterworth and Hienemann, Stoneham, MA.
Hansbo,  P., 1993, “Explicit Streamline Diffusion Finite Element Methods for the Compressible Euler Equations in Conservation Variables,” J. Comput. Phys., 109, pp. 274–288.
Rider,  W. J., and Kothe,  D. B., 1998, “Reconstructing Volume Tracking,” J. Comput. Phys., 141, pp. 112–152.
Rider, W. J., and Kothe, D. B., 1995, “Streaching and Tearing Interface Tracking Methods,” AIAA Paper 95-1717 (LANL Report LA-UR-95-1145).
Sethian,  J. A., and Adalstienson,  D., 1999, “The Fast Construction of Extension Velocities in Level Set Methods,” J. Comput. Phys., 148, pp. 2–22.
Chorin,  A. J., 1968, “Numerical Solution of the Navier-Stokes Equation,” Math. Comput., 23, pp. 745–762.
Zienkiewicz,  O. C., and Codina,  R., 1995, “A General Algorithm for Compressible and Incompressible Flow, Part I. The Split Characteristic Based Scheme,” Int. J. Numer. Methods Fluids, 20, pp. 869–885.
Hadamard,  J. S., 1911, C. R. Acad. Sci., 152, p. 1735.

Figures

Grahic Jump Location
A typical finite element mesh with interface Γint showing the support of a generic node I and the enriched notes
Grahic Jump Location
Example of an enriched finite element shape function in R1
Grahic Jump Location
Enriched finite element shape function for a three-node linear triangular element
Grahic Jump Location
Enrichment for a typical finite element mesh, showing elements that are fully enriched, partially enriched, and unenriched. Also illustrated is the boundary where the enrichment vanishes.
Grahic Jump Location
Initial configuration of interstitial fluid problem
Grahic Jump Location
Phase interface at several time-steps for interstitial fluid problem
Grahic Jump Location
Phase interface for several time-steps for rising bubble problem

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In