Extracting Physical Parameters of Mechanical Models From Identified State-Space Representations

[+] Author and Article Information
M. De Angelis

Dip. Ing. Strutt. e Geotecnica, University di Roma “La Sapienza,” Rome, Italy

H. Luş, R. Betti

Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027

R. W. Longman

Department of Mechanical Engineering, Columbia University, New York, NY 10027

J. Appl. Mech 69(5), 617-625 (Aug 16, 2002) (9 pages) doi:10.1115/1.1483836 History: Received December 02, 2001; Revised February 28, 2002; Online August 16, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Agbabian,  M. S., Masri,  S. F., Miller,  R. K., and Caughey,  T. K., 1991, “System Identification Approach to Detection of Structural Changes,” J. Eng. Mech., 117(2), pp. 370–390.
Smyth,  A. W., Masri,  S. F., Caughey,  T. K., and Hunter,  N. F., 2000, “Surveillance of Intricate Mechanical Systems on the Basis of Vibration Signature Analysis,” ASME J. Appl. Mech., 67(3), pp. 540–551.
Ewins, D. J., 1984, Modal Testing: Theory and Practice Research Studies Press, Letchworth UK.
Mottershead,  J. E., and Friswell,  M. I., 1993, “Model Updating in Structural Dynamics: A Survey,” J. Sound Vib., 165(2), pp. 347–375.
Berman,  A., 1979, “Mass Matrix Correction Using an Incomplete Set of Measured Modes,” AIAA J., 17(10), pp. 1147–1148.
Baruch,  M., 1982, “Optimal Correction of Mass and Stiffness Matrices Using Measured Modes,” AIAA J., 20(11), pp. 1623–1626.
Baruch,  M., 1997, “Modal Data are Insufficient for Identification of Both Mass and Stiffness Matrices,” AIAA J., 35(11), pp. 1797–1798.
Beck,  J. L., and Katafygiotis,  L. S., 1998, “Updating Models and Their Uncertainties. I: Bayesian Statistical Framework,” J. Eng. Mech., 124(4), pp. 455–461.
Ibrahim,  S. R., and Mikulcik,  E. C., 1997, “A Method for the Direct Identification of Vibration Parameters From the Free Response,” Shock Vib. Bull., 47, Part 4, pp. 183–198.
Ibrahim,  S. R., 1977, “Random Decrement Technique for Modal Identification of Structures,” J. Spacecr. Rockets, 14(11), pp. 696–700.
Vold,  H., Kundrat,  J., Rocklin,  G. T., and Russell,  R., 1982, “A Multiple-Input Modal Estimation Algorithm for Mini Computers,” SAE Trans., 91(1), pp. 815–821.
Juang,  J. N., and Pappa,  R. S., 1985, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control Dyn., 8(5), pp. 620–627.
Juang,  J. N., Cooper,  J. E., and Wright,  J. R., 1988, “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification,” Cont. Theor. Adv. Technol., 4(1), pp. 5–14.
Juang,  J. N., Phan,  M., Horta,  L. G., and Longman,  R. W., 1993, “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments,” J. Guid. Control Dyn., 16(2), pp. 320–329.
Luş,  H., Betti,  R., and Longman,  R. W., 1999, “Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data,” Earthquake Eng. Struct. Dyn., 28, pp. 1449–1467.
Luş,  H., Betti,  R., and Longman,  R. W., 2002, “Obtaining Refined First-Order Predictive Models of Linear Structural Systems,”Earthquake Eng. Struct. Dyn., 31, pp. 1413–1440.
Sestieri,  A., and Ibrahim,  S. R., 1994, “Analysis of Errors and Approximations in the Use of Modal Coordinates,” J. Sound Vib., 177(2), pp. 145–157.
Imregun, M., and Ewins, D. J., 1993, “Realization of Complex Modeshapes,” Proceedings of the 11th International Modal Analysis Conference, Society for Experimental Mechanics, Bethel, CT, pp. 1303–1309.
Ibrahim,  S. R., 1983, “Computation of Normal Modes From Identified Complex Modes,” AIAA J., 21(3), pp. 446–451.
Alvin, K. F., 1993, “Second-Order Structural Identification Via State Space Based System Realizations,” Ph.D. Thesis, University of Colorado, Boulder, Co.
Alvin,  K. F., and Park,  K. C., 1994, “Second-Order Structural Identification Procedure Via State-Space-Based System Identification,” AIAA J., 32(2), pp. 397–406.
Zhang,  Q., and Lallement,  G., 1987, “Comparison of Normal Eigenmodes Calculation Methods Based on Identified Complex Eigenmodes,” J. Spacecr. Rockets, 24, pp. 69–73.
Yang,  C. D., and Yeh,  F. B., 1990, “Identification, Reduction, and Refinement of Model Parameters by the Eigensystem Realization Algorithm,” J. Guid. Control Dyn., 13(6), pp. 1051–1059.
Alvin,  K. F., Peterson,  L. D., and Park,  K. C., 1995, “Method for Determining Minimum—Order Mass and Stiffness Matrices From Modal Test Data,” AIAA J., 33(1), pp. 128–135.
Tseng,  D.-H., Longman,  R. W., and Juang,  J. N., 1994, “Identification of Gyroscopic and Nongyroscopic Second Order Mechanical Systems Including Repeated Problems,” Adv. Astronaut. Sci., 87, pp. 145–165.
Tseng,  D.-H., Longman,  R. W., and Juang,  J. N., 1994, “Identification of the Structure of the Damping Matrix in Second Order Mechanical Systems,” Adv. Astronaut. Sci., 87, pp. 166–190.
Chen,  S. Y., Ju,  M. S., and Tsuei,  Y. G., 1996, “Extraction of Normal Modes for Highly Coupled Incomplete Systems With General Damping,” Mech. Syst. Signal Process., 10(1), pp. 93–106.
Balmès,  E., 1997, “New Results on the Identification of Normal Modes From Experimental Complex Modes,” Mech. Syst. Signal Process., 11(2), pp. 229–243.
Luş, H. 2001, “Control Theory Based System Identification,” Ph.D. Thesis, Columbia University, New York.
Koh,  C. G., and See,  L. M., 1993, “Identification and Uncertainty Estimation of Structural Parameters,” J. Eng. Mech., 120(6), pp. 1219–1236.


Grahic Jump Location
Three-degree-of-freedom system considered for the application of the proposed approach
Grahic Jump Location
Truss structure with eight unrestrained degrees-of-freedom (one horizontal and one vertical for each of the nodes denoted by 1, 2, 3, and 4)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In